Abstract:
A decoding device includes an acquisition unit configured to acquire a first frequency signal including a narrowband signal and a wideband signal, a direct inverse orthogonal transform unit configured to perform a direct matrix operation with respect to the narrowband signal of the first frequency signal so as to perform inverse orthogonal transform, and a high-speed inverse orthogonal transform unit configured to perform inverse orthogonal transform employing a high-speed operation method with respect to the wideband signal of the first frequency signal.
Abstract:
A coding apparatus includes a generation unit configured to generate first coding information used for first coding of a first audio signal and second coding information used for second coding of a second audio signal, and generate third coding information used for the first coding of the second audio signal and fourth coding information used for the second coding of a third audio signal; a first coding unit configured to generate first data and second data; a second coding unit configured to generate third data and fourth data by performing the second coding on the third audio signal; and a multiplexing unit configured to generate a stream of the first audio signal and a stream of the second audio signal. The third data is decoded in place of the second data in a case where a loss or an error has occurred in the stream of the second audio signal.
Abstract:
A decoding device including a decoding unit which decodes encoded data, an inverse orthogonal transformation unit which performs inverse orthogonal transformation for the encoded data and obtains a time series waveform element in a unit of blocks, a correlation calculation unit which obtains a correlation between a time series waveform element of a block arranged immediately before an error block which is a block in which an error has occurred during decoding by the decoding unit and a time series waveform element of a block arranged a predetermined number of blocks before the block, a cycle calculation unit which obtains a basic cycle of a block unit of the error block based on the correlation obtained by the correlation calculation unit, and a generation unit which generates a substitute signal of the time series waveform element of the error block.
Abstract:
The present invention relates to an encoding device and an encoding method, a decoding device and a decoding method, and a program that reduce deterioration of sound quality due to encoding of audio signals.An envelope emphasis part (51) emphasizes an envelope (ENV). A noise shaping part (52) divides an emphasized envelope (D) formed by emphasis of the envelope (ENV) by a value larger than 1, and subtracts noise shaping (G) specified by information (NS) from a result of the division. A quantization part (14) sets a result of the subtraction as a quantization bit count (WL), and quantizes a normalized spectrum (S1) formed by normalization of a spectrum (S0) based on the quantization bit count (WL). A multiplexing part (53) multiplexes the information (NS), a quantized spectrum (QS) formed by quantization of the normalized spectrum (S1), and the envelope (ENV). The present invention can be applied to an encoding device encoding audio signals, for example.
Abstract:
A main object of the present invention is to provide an intermediate transfer belt for image-forming devices and a method for producing the intermediate transfer belt, the intermediate transfer belt having excellent image transfer to rough paper and resistance to abrasion and being free from problems such as filming, by forming a surface layer that has excellent resistance to abrasion and in which defects such as pinholes are not likely to occur even when the surface layer is thinned.An intermediate transfer belt for image-forming devices and a method for producing the same, the intermediate transfer belt comprising at least the following three layers laminated in the described order: (a) a base layer formed from resin, (b) a rubber-elastic layer formed from a rubber or elastomer, having a thickness of 200 to 400 μm and (c) a surface layer formed from resin, having a thickness of 0.5 to 6 μm, wherein the intermediate transfer belt has the following properties: (i) the dynamic ultramicro hardness (ISO14577-1) measured from the surface layer side is 2.5 to 4.5 N/mm2 at the indentation depth of 2 μm, and 1.0 N/mm2 or less at the indentation depth of 10 μm, and/or (ii) the rubber-elastic layer contains a filler in a proportion of 0.4 to 4.0 vol. %, and the ratio (M1/M3) of the mass concentration M1 of the filler in the region from the interface between the surface layer and the rubber-elastic layer toward the base layer to a depth of 20 μm, to the mass concentration M3 of the filler in the region from 120 μm to 140 μm in depth from the interface between the surface layer and the rubber-elastic layer toward the base layer is 1.3 or higher.
Abstract:
An encoding apparatus includes a noise detector configured to detect noise included in a certain band in accordance with an audio signal, a gain controller configured to perform gain control on the audio signal so that components in the certain band of the audio signal are attenuated when the noise is detected by the noise detector, a bit allocation calculation unit configured to calculate the numbers of bits to be allocated to frequency spectra of the audio signal which have been subjected to the gain control performed by the gain controller in accordance with the frequency spectra, and a quantization unit configured to quantize the frequency spectra of the audio signal which have been subjected to the gain control in accordance with the numbers of the bits.
Abstract:
There is provided an audio encoder comprising a determination part determining, based on frequency spectra of audio signals of a plurality of channels, a mixing ratio as a ratio, relative to a frequency spectrum after mixing for each channel of the plurality of channels, of the frequency spectrum for another channel, a mixing part mixing the frequency spectra of the plurality of channels for each channel based on the mixing ratio determined by the determination part, and an encoding part encoding the frequency spectra of the plurality of channels after mixing by the mixing part.
Abstract:
An encoding apparatus includes a time-frequency transform unit that performs a time-frequency transform on an audio signal, a normalization unit that normalizes a frequency spectral coefficient obtained by the time-frequency transform in order to generate encoded data of the audio signal, a level calculation unit that calculates a level of the audio signal, a scale factor changing unit that changes a concealment scale factor included in encoded concealment data obtained by performing, on the basis of the level of the audio signal, a time-frequency transform and normalization on a minute noise signal, the concealment scale factor being a scale factor relating to a coefficient used for the normalization, and an output unit that outputs the encoded data of the audio signal generated by the normalization unit or outputs, as encoded data of the audio signal, the encoded concealment data whose concealment scale factor has been changed.
Abstract:
A signal processing device includes a bit-pattern output unit and a look-up table storage unit which are configured as follows: The bit-pattern output unit is provided for receiving input 1-bit digital signals generated by ΔΣ modification and aligning bits of the input 1-bit digital signals in a chronological order to output parallel bit pattern. The look-up table storage unit is provided for storing a look-up table that represents a relationship between the bit patterns output from the bit pattern output unit and resulting values of a filtering arithmetic operation on the basis of the bit patterns. In the signal processing device, the bit patterns output from the bit-pattern output unit are provided as indexes. The indexes are referenced to output the resulting values of the filtering arithmetic operation corresponding to the bit patterns listed in the look-up table stored in the look-up table storage unit.
Abstract:
There is provided an audio encoder comprising a determination part determining, based on frequency spectra of audio signals of a plurality of channels, a mixing ratio as a ratio, relative to a frequency spectrum after mixing for each channel of the plurality of channels, of the frequency spectrum for another channel, a mixing part mixing the frequency spectra of the plurality of channels for each channel based on the mixing ratio determined by the determination part, and an encoding part encoding the frequency spectra of the plurality of channels after mixing by the mixing part.