Abstract:
A transducing head has a main pole and at least one magnetic element (such as a return pole or a shield) which provides a potential return path for a magnetic field produced by the main pole. The magnetic element is spaced from the main pole. The magnetic element is formed at least in part of a magnetic material having a material property that reduces side writing at the magnetic element.
Abstract:
A transducing head has a main pole and at least one magnetic element (such as a return pole or a shield) which provides a potential return path for a magnetic field produced by the main pole. The magnetic element is spaced from the main pole. The magnetic element has a first edge closest to the main pole and a second edge furthest from the main pole. Permeability of the magnetic element increases from the first edge to the second edge.
Abstract:
A write head for use in a magnetic disk drive and methods of manufacturing the same. When a non-magnetic reactive ion etching (RIE) stop layer is used in a damascene main pole fabrication process, the leading edge shield and the side shield have a magnetic separation. By replacing a non-magnetic RIE stop layer with a magnetic RIE stop layer, no removal of the RIE stop layer around the main pole is necessary. Additionally, the leading edge shield and the side shield will magnetically join together without extra processing as there will be no magnetic separation between the leading edge shield and the side shield.
Abstract:
A magnetic device includes a write element including a write element tip, and a conductive coil for carrying a write current to induce a first field in the write element. A first conductor proximate a trailing edge of the write pole tip is operable to carry a first assist current to generate a second field that augments the first field. A second conductor proximate a leading edge of the write pole tip is operable to carry a second assist current to generate a third field that augments the first field. First and second side shields are on opposing sides of the write element in a cross-track direction.
Abstract:
A magnetic transducing head having an air bearing surface has a bottom shield, a shared pole, a read element, a substantially planar composite top pole; and a conductive coil. The read element is positioned between the bottom shield and the shared pole. The top pole is formed of high magnetic moment pole tip portion and a high resistivity yoke portion. The pole tip portion of the top pole is substantially coplanar with the yoke portion of the top pole. The pole tip portion of the top pole is separated from the shared pole at the air bearing surface by a write gap, while the yoke portion of the top pole is in contact with the shared pole opposite the air bearing surface. At least a portion of the conductive coil is positioned between the shared pole and the top pole.
Abstract:
A write head for use in a magnetic disk drive and methods of manufacturing the same. When a non-magnetic reactive ion etching (RIE) stop layer is used in a damascene main pole fabrication process, the leading edge shield and the side shield have a magnetic separation. By replacing a non-magnetic RIE stop layer with a magnetic RIE stop layer, no removal of the RIE stop layer around the main pole is necessary. Additionally, the leading edge shield and the side shield will magnetically join together without extra processing as there will be no magnetic separation between the leading edge shield and the side shield.
Abstract:
A pole tip shield for a write element of a recording head is disclosed. The pole tip shield is spaced from the pole tip in the leading edge direction to provide a magnetic wall angle to reduce ATI or adjacent track erasure to compensate for the skew angle of the head. In illustrated embodiments, the pole tip shield includes side portions. In illustrated embodiments the pole tip shield is generally “U” shaped and side portions of the pole tip shield include different thickness or width dimensions. In illustrated embodiments, the pole tip shield provides a magnetic wall angle for a rectangular shaped pole tip. Embodiments disclosed in the application include a trailing edge shield separated from the pole tip shield along an air bearing surface of the head by a non-magnetic gap portion.
Abstract:
A pole tip shield for a write element of a recording head is disclosed. The pole tip shield is spaced from the pole tip in the leading edge direction to provide a magnetic wall angle to reduce ATI or adjacent track erasure to compensate for the skew angle of the head. In illustrated embodiments, the pole tip shield includes side portions. In illustrated embodiments the pole tip shield is generally “U” shaped and side portions of the pole tip shield include different thickness or width dimensions. In illustrated embodiments, the pole tip shield provides a magnetic wall angle for a rectangular shaped pole tip. Embodiments disclosed in the application include a trailing edge shield separated from the pole tip shield along an air bearing surface of the head by a non-magnetic gap portion.
Abstract:
A transducing head has a main pole and at least one magnetic element (such as a return pole or a shield) which provides a potential return path for a magnetic field produced by the main pole. The magnetic element is spaced from the main pole. The magnetic element has a first edge closest to the main pole and a second edge furthest from the main pole. Permeability of the magnetic element increases from the first edge to the second edge.
Abstract:
A transducing head has a main pole and at least one magnetic element (such as a return pole or a shield) which provides a potential return path for a magnetic field produced by the main pole. The magnetic element is spaced from the main pole. The magnetic element has a first edge closest to the main pole and a second edge furthest from the main pole. Permeability of the magnetic element increases from the first edge to the second edge.