Abstract:
Disclosed herein is a method for manufacturing a semiconductor device, the method including the steps of: forming a recess in an insulating film provided over a substrate; forming a plating seed layer in such a way that an inner wall of the recess is covered, the plating seed layer arising from sequential deposition of an alloy layer composed of copper and a metal other than copper and a conductive layer composed mainly of copper; burying a conductive layer composed mainly of copper by plating in the recess on which the plating seed layer is provided; and carrying out heat treatment to cause the metal in the alloy layer to react with a constituent in the insulating film, to thereby form a barrier film composed of a metal compound having a copper diffusion barrier function at an interface between the alloy layer and the insulating film.
Abstract:
A method for manufacturing a semiconductor device includes: the first step of forming, in an insulating film provided on a substrate, a recess that is porositized at least at inner walls; the second step of forming an alloy layer made of copper and a metal other than copper so as to cover the inner walls of the recess; the third step of burying a conductive layer made primarily of copper in the recess provided with the alloy layer; the fourth step of subjecting the thus treated substrate to thermal treatment to cause the metal in the alloy layer to react with a constituent component of the insulating film to form a barrier film made of a metal compound having Cu diffusion barrier properties.
Abstract:
A solid-state imaging element includes a semiconductor substrate that has a light reception portion performing a photoelectric conversion of an incident light; an oxide layer that is formed on a surface of the semiconductor substrate; a light shielding layer that is formed on an upper layer further than the oxide layer via an adhesion layer; and an oxygen supply layer that is disposed between the oxide layer and the adhesion layer and is formed of a material which shows an oxidation enthalpy smaller than that of a material forming the oxide layer.
Abstract:
A method for manufacturing a semiconductor device includes: the first step of forming, in an insulating film provided on a substrate, a recess that is porositized at least at inner walls; the second step of forming an alloy layer made of copper and a metal other than copper so as to cover the inner walls of the recess; the third step of burying a conductive layer made primarily of copper in the recess provided with the alloy layer; the fourth step of subjecting the thus treated substrate to thermal treatment to cause the metal in the alloy layer to react with a constituent component of the insulating film to form a barrier film made of a metal compound having Cu diffusion barrier properties.
Abstract:
A solid-state imaging element includes a semiconductor substrate that has a light reception portion performing a photoelectric conversion of an incident light; an oxide layer that is formed on a surface of the semiconductor substrate; a light shielding layer that is formed on an upper layer further than the oxide layer via an adhesion layer; and an oxygen supply layer that is disposed between the oxide layer and the adhesion layer and is formed of a material which shows an oxidation enthalpy smaller than that of a material forming the oxide layer.