Abstract:
A toner supply device for preventing adverse influence caused by a charging failure of toner without scattering toner and generating ozone due to corona discharge and realizing low potential development according to an ETH phenomenon. The toner supply device is provided with the specific electrostatic toner transport substrate on which a plurality electrodes are disposed.
Abstract:
A classifier having a simple constitution for classifying powder with a high accuracy is provided. The classifier is provided with a transfer board having a plurality of electrodes for generating electric fields for transferring and hopping the powder by an electrostatic force. The classifier is further provided with an opposite roller generating an electric field for transporting and attaching the powder (toner) transferred and hopped on the transfer board to the opposite roller, which is opposite to the transfer board.
Abstract:
A developing device including a latent image supporter. Powder is adhered on the latent image supporter to develop a latent image on the latent image supporter and a transporting member is arranged opposite to the latent image supporter. A plurality of electrodes are formed in the transporting member for generating a traveling-wave electric field to move the powder, and n-phase voltages are applied to the electrodes of the transporting member to form an electric field in a first direction so that the powder moves towards the latent image supporter at an image portion of the latent image and in a second direction so that the powder moves in a direction opposite to the latent image supporter at a non-image portion of the latent image.
Abstract:
A developing device including a latent image supporter. Powder is adhered on the latent image supporter to develop a latent image on the latent image supporter and a transporting member is arranged opposite to the latent image supporter. A plurality of electrodes are formed in the transporting member for generating a traveling-wave electric field to move the powder, and n-phase voltages are applied to the electrodes of the transporting member to form an electric field in a first direction so that the powder moves towards the latent image supporter at an image portion of the latent image and in a second direction so that the powder moves in a direction opposite to the latent image supporter at a non-image portion of the latent image.
Abstract:
An electrostatic transportation device is provided with a transporting base plate having a plurality of electrodes which generate an electric field which performs transporting and hopping of fine particles by an electrostatic force, wherein a width of each of the electrodes in a travelling direction of the fine particles is set to be in a range of 1 time to 20 times an average particle diameter of the fine particles, a pitch between the electrodes in the travelling direction of the fine particles is set to be in a range of 1 time to 20 times the average particle diameter of the fine particles, and driving waveforms of n phases or more (n is an integer of 3 or more) are applied to respective electrodes.
Abstract:
A developing device including a latent image supporter. Powder is adhered on the latent image supporter to develop a latent image on the latent image supporter and a transporting member is arranged opposite to the latent image supporter. A plurality of electrodes are formed in the transporting member for generating a traveling-wave electric field to move the powder, and n-phase voltages are applied to the electrodes of the transporting member to form an electric field in a first direction so that the powder moves towards the latent image supporter at an image portion of the latent image and in a second direction so that the powder moves in a direction opposite to the latent image supporter at a non-image portion of the latent image.
Abstract:
A developing device is provided. The developing device comprises a latent image supporter, wherein powder is adhered on the latent image supporter to develop a latent image on the latent image supporter; a transporting member arranged opposite to the latent image supporter; and a plurality of electrodes formed in the transporting member for generating a traveling-wave electric field to move the powder, wherein n-phase voltages are applied to the electrodes of the transporting member to form an electric field in a first direction so that the powder moves towards the latent image supporter at an image portion of the latent image and in a second direction so that the powder moves in a direction opposite to the latent image supporter at a non-image portion of the latent image.
Abstract:
A classifier having a simple constitution for classifying powder with a high accuracy is provided. The classifier is provided with a transfer board having a plurality of electrodes for generating electric fields for transferring and hopping the powder by an electrostatic force. The classifier is further provided with an opposite roller generating an electric field for transporting and attaching the powder (toner) transferred and hopped on the transfer board to the opposite roller, which is opposite to the transfer board.
Abstract:
An electrostatic ink-jet head includes an oscillation plate which defines a bottom of a pressurizing chamber. An electrode substrate is bonded to the oscillation plate and includes a recessed portion that defines an internal space between the oscillation plate and the electrode substrate. A curved electrode is arranged on the recessed portion so as to face the oscillation plate via the internal space. When a driving voltage is applied to the electrode, the electrode actuates the oscillation plate via an electrostatic force, so as to pressurize ink in the pressurizing chamber, thereby ejecting an ink drop onto the recording paper. In the ink-jet head, a dielectric layer is provided on at least one of the electrode and the oscillation plate, and the recessed portion of the electrode substrate has a generally concave cross-section taken along shorter sides of the oscillation plate, such that a gap between the electrode and the oscillation plate is gradually decreased from a middle point to ends of the shorter sides.
Abstract:
A developing device including a latent image supporter. Powder is adhered on the latent image supporter to develop a latent image on the latent image supporter and a transporting member is arranged opposite to the latent image supporter. A plurality of electrodes are formed in the transporting member for generating a traveling-wave electric field to move the powder, and n-phase voltages are applied to the electrodes of the transporting member to form an electric field in a first direction so that the powder moves towards the latent image supporter at an image portion of the latent image and in a second direction so that the powder moves in a direction opposite to the latent image supporter at a non-image portion of the latent image.