摘要:
In one embodiment, the optical read/write apparatus includes a plurality of optical pickups arranged to cross tracks of an optical storage medium and a control section. On finding the data that has been written by any of those optical pickups inaccurate or on detecting any defect at a location where data is going to be written by any of the optical pickups, the control section instructs another one of the optical pickups to write that data on a different track from a track on which the data should have been written.
摘要:
An optical pickup according to the present invention includes an integrated circuit element (LDD) 5 for driving first, second, and third semiconductor lasers 3, 4, and 5. The LDD 50 is shaped so as to have a rectangular principal face surrounded by one side, with a plurality of input/output pins being arranged along each side. The plurality of input/output pins include a first pin group connected to a blue-violet laser 5 whose oscillation wavelength is the shortest, a second pin group connected to a red laser 4, and a third pin group connected to an infrared laser 3. The wiring structure of the optical pickup includes a first transmission line 41 for connecting the first pin group to the blue-violet laser 5, a second transmission line 33 for connecting the second pin group to the red laser 4, and a third transmission line 31 for connecting the third pin group to the infrared laser 3, where the first transmission line 41 is shorter than both the second and third transmission lines 31 and 33. Of the rectangular principal face of the LDD 50, the side along which the first pin group is provided is orthogonal to the side along which the second pin group is provided or to the side along which the third pin group is provided.
摘要:
An optical pickup device 11 according to the present invention includes: a light source 1 that emits a light beam; a condensing element 5 for condensing the light beam toward an information storage medium 14; and a protruding member 101, which comes closer to the information storage medium 14 than the condensing element 5 does when the condensing element 5 faces the information storage medium 14. The protruding member 101 is shaped so as to gradually protrude toward the information storage medium 14 in a tangential direction 21 of the information storage medium 14 rotating.
摘要:
In one embodiment of the present invention, an optical pickup for writing and reading data on an optical storage medium comprises a diffractive element for diffracting a light beam to split it into multiple light beams. The diffracted light beams includes a zero-order diffracted light beam for writing data on a track of the land or the groove of the optical storage medium and non-zero-order diffracted light beams for reading the data from the track. The diffractive element has first and second diffraction gratings that have mutually different grating vector directions and pitches. The first diffraction grating forms light beam spots on the same track by the non-zero-order and zero-order diffracted light beams. The second diffraction grating forms a light beam spot to extend to both sides of said track, or forms a light beam spot on one side of said track, by the non-zero-order diffracted light beams.
摘要:
An optical head is provided with a light source for outputting laser light having a wavelength of 430 nm or less; an objective lens for collecting the laser light outputted from the light source to an optical disc having a plurality of information recording surfaces; a light receiving element for receiving laser light reflected on the optical disc; and a detecting lens for guiding the laser light reflected on the optical disc to the light receiving element. The detecting lens is formed of a resin material. The detecting lens is arranged so that a light collecting position of the laser light reflected on an information recording surface different from an information recording surface having a thinnest protection substrate, among the information recording surfaces, is outside the detecting lens, at the time of recording or reproducing information on or from the information recording surface having the thinnest protection substrate.
摘要:
An optical head (31) is provided with a light source (1) for outputting laser light having a wavelength of 430 nm or less; an objective lens (7) for collecting the laser light outputted from the light source (1) to an optical disc (60) having a plurality of information recording surfaces; a light receiving element (10) for receiving laser light reflected on the optical disc (60); and a detecting lens (8) for guiding the laser light reflected on the optical disc (60) to the light receiving element (10). The detecting lens (8) is formed of a resin material. The detecting lens (8) is arranged so that a light collecting position of the laser light reflected on an information recording surface different from an information recording surface having a thinnest protection substrate, among the information recording surfaces, is outside the detecting lens (8), at the time of recording or reproducing information on or from the information recording surface having the thinnest protection substrate.
摘要:
In one embodiment, the optical pickup device includes: a light source that emits a light beam; a diffractive element that diffracts the light beam and generates a zero-order and ±first-order diffracted light beams; an objective lens that converges the diffracted light beams onto the same track on the storage medium; and a photodetector that receives the diffracted light beams reflected from the storage medium. If a distance from a light beam spot left by the zero-order diffracted light beam on the track to light beam spots left by the ±first-order diffracted light beams on that track is d [μm], the scanning linear velocity of the storage medium is v [m/s], and a time it takes for a phase-change material of the storage medium that has once been melted by the zero-order diffracted light beam to solidify is T [μs], vT≦d is satisfied.
摘要:
In one embodiment, the optical read/write apparatus includes a plurality of optical pickups arranged to cross tracks of an optical storage medium and a control section. On finding the data that has been written by any of those optical pickups inaccurate or on detecting any defect at a location where data is going to be written by any of the optical pickups, the control section instructs another one of the optical pickups to write that data on a different track from a track on which the data should have been written.
摘要:
An optical pickup according to the present invention includes an integrated circuit element (LDD) 5 for driving first, second, and third semiconductor lasers 3, 4, and 5. The LDD 50 is shaped so as to have a rectangular principal face surrounded by one side, with a plurality of input/output pins being arranged along each side. The plurality of input/output pins include a first pin group connected to a blue-violet laser 5 whose oscillation wavelength is the shortest, a second pin group connected to a red laser 4, and a third pin group connected to an infrared laser 3. The wiring structure of the optical pickup includes a first transmission line 41 for connecting the first pin group to the blue-violet laser 5, a second transmission line 33 for connecting the second pin group to the red laser 4, and a third transmission line 31 for connecting the third pin group to the infrared laser 3, where the first transmission line 41 is shorter than both the second and third transmission lines 31 and 33. Of the rectangular principal face of the LDD 50, the side along which the first pin group is provided is orthogonal to the side along which the second pin group is provided or to the side along which the third pin group is provided.
摘要:
An optical pickup according to the present invention includes an integrated circuit element (LDD) 5 for driving first, second, and third semiconductor lasers 3, 4, and 5. The LDD 50 is shaped so as to have a rectangular principal face surrounded by one side, with a plurality of input/output pins being arranged along each side. The plurality of input/output pins include a first pin group connected to a blue-violet laser 5 whose oscillation wavelength is the shortest, a second pin group connected to a red laser 4, and a third pin group connected to an infrared laser 3. The wiring structure of the optical pickup includes a first transmission line 41 for connecting the first pin group to the blue-violet laser 5, a second transmission line 33 for connecting the second pin group to the red laser 4, and a third transmission line 31 for connecting the third pin group to the infrared laser 3, where the first transmission line 41 is shorter than both the second and third transmission lines 31 and 33. Of the rectangular principal face of the LDD 50, the side along which the first pin group is provided is orthogonal to the side along which the second pin group is provided or to the side along which the third pin group is provided.