摘要:
In one embodiment, the optical pickup device includes: a light source that emits a light beam; a diffractive element that diffracts the light beam and generates a zero-order and ±first-order diffracted light beams; an objective lens that converges the diffracted light beams onto the same track on the storage medium; and a photodetector that receives the diffracted light beams reflected from the storage medium. If a distance from a light beam spot left by the zero-order diffracted light beam on the track to light beam spots left by the ±first-order diffracted light beams on that track is d [μm], the scanning linear velocity of the storage medium is v [m/s], and a time it takes for a phase-change material of the storage medium that has once been melted by the zero-order diffracted light beam to solidify is T [μs], vT≦d is satisfied.
摘要:
In one embodiment of the present invention, an optical pickup for writing and reading data on an optical storage medium comprises a diffractive element for diffracting a light beam to split it into multiple light beams. The diffracted light beams includes a zero-order diffracted light beam for writing data on a track of the land or the groove of the optical storage medium and non-zero-order diffracted light beams for reading the data from the track. The diffractive element has first and second diffraction gratings that have mutually different grating vector directions and pitches. The first diffraction grating forms light beam spots on the same track by the non-zero-order and zero-order diffracted light beams. The second diffraction grating forms a light beam spot to extend to both sides of said track, or forms a light beam spot on one side of said track, by the non-zero-order diffracted light beams.
摘要:
An exemplary optical pickup comprises: a light source with first and second emission points; an optical branching element which branches light emitted from the first emission point into multiple light beams including a first main beam and first sub-beams and which also branches light emitted from the second emission point into multiple light beams including a second main beam and second sub-beams; an optical system which condenses the multiple light beams produced by the optical branching element onto an optical storage medium, thereby making the first and second main beams form a write light beam spot and a read light beam spot, respectively, on a target recording track on the storage medium and making the first and second sub-beams form reference light beam spots and other light beam spots somewhere on the storage medium other than the target recording track.
摘要:
In one embodiment, an optical pickup includes an optical system which forms multiple light beams based on the light emitted from a light source and which converges a write beam and a read beam, thereby forming a main spot and a sub-spot, respectively, on an optical storage medium. This optical system converges the write and read beams onto the optical storage medium so that the main spot moves through the same region on the optical storage medium ahead of the sub-spot. The optical pickup further includes a detector for sensing the write and read beams reflected from the storage medium. The detector includes a first photodiode 10 that receives the reflected light from the main spot 50R on the storage medium and a second photodiode 11 that receives a portion of the reflected light from the sub-spot 51R.
摘要:
When performing recording/reproduction of information for a given recording layer of an optical disc having three recording layers, influences of reflected light from other recording layers are reduced or removed, thus making it possible to obtain a more stable RF signal or focus error signal.An optical pickup device includes a light source, a collimator lens, an objective lens, a photodetector, and a light shielding member. Among the recording layers of the optical disc, a first layer and a second layer adjoining each other are disposed in the order of the first layer and second layer from near the objective lens. The light shielding member is disposed at a position satisfying the condition d>d1 to block a part of reflected light from the second layer when light is converged on the first layer, where d is an optical path length from the photodetector to the light shielding member; and d1 is a distance from the photodetector to a position at which reflected light from the second layer becomes focused between the collimator lens and the photodetector.
摘要:
An optical disk apparatus including: a light source; an objective lens for converging light emitted from the light source toward an optical disk; a first photodetection device for detecting reflected light from the optical disk and outputting a first signal; a signal processing section for receiving the first signal and generating a signal containing information recorded on the optical disk; a second photodetection device for detecting a portion of the light emitted from the light source and outputting a second signal; a light source driving section for receiving the second signal, and based on the second signal, driving the light source so that output power of the light source equals a target value; and an amplitude fluctuation detection section for detecting an amplitude fluctuation amount of the second signal, and if the amplitude fluctuation amount exceeds a predetermined value, changing driving characteristics of the light source driving section.
摘要:
A light emitting device according to the present invention includes: a first light source for emitting light having a first wavelength; and a second light source for emitting light having a second wavelength which is different from the first wavelength, wherein the first light source and the second light source are arranged in the same housing, and a relationship of θh1>θh2 is satisfied, where θh1 denotes an angle (full-width-half-maximum) of radiation of the light emitted from the first light source in the horizontal direction, and θh2 denotes an angle (full-width-half-maximum) of radiation of the light emitted from the second light source in the horizontal direction.
摘要:
There is provided an information processing device which is capable of suppressing generation of stray light at the time of recording and reproduction of information, thus enabling quality information recording and reproduction. The information processing device includes: a radiation light source 2; and a converging section for converging rays emitted from the light source toward an information recording medium having a photosensitive layer 11b, wherein the converging section splits the rays into first and second rays 3′ and 3 respectively traveling through first and second spaces as divided by a plane at least containing a point optical axis L, and converges the first and second rays 3′ and 3 onto first and second points 12′ and 12 in the information recording medium 11, the photosensitive layer 11b being interposed between the first and second points 12′ and 12. Between the first and second points 12′ and 12, the first and second rays 3′ and 3 interfere with each other to form interference fringes, the interference fringes representing information to be recorded in the photosensitive layer 11b of the information recording medium 11.
摘要:
An optical disk device has an aperture of an objective lens in an incoming path of a beam from a semiconductor laser to an optical disk formed larger than an aperture in a return path from the optical disk or an aperture is varied in recording and in reproduction. This configuration improves recording/reproducing ability since light is focused on an optical disk with high numerical aperture. In addition, since reflected light from the optical disk is detected with low numerical aperture, margins for tilt and defocus are not reduced. Furthermore, since unnecessary signal components contained in the reflected light can be eliminated, a S/N (signal-to-noise ratio) of an information signal also increases. Thus, a high-performance optical disk device can be obtained. Alternatively, by varying the aperture of an objective lens in recording and in reproduction, an optical disk device in which recording density and recording quality are increased without deteriorating reproduction quality can be obtained.
摘要:
This optical disk device includes an objective lens (7) for condensing radiated light from a light source on an optical disk (8), an optical detecting unit for detecting reflected light from the optical disk (8), and a control unit for performing the tracking control and/or the tilt control of the objective lens (7) by utilizing the output from the optical detecting unit, in which the control unit uses the off-track quantity and/or the tilt quantity of the objective lens (7) when performing the above described control.