Abstract:
A vehicle light can improve the visibility (noticeability) for pedestrians, roadside obstructs, other vehicles and the like in actual traffic environments. The vehicle light can be configured to project light beams with a predetermined white color, and can include a light source with a color temperature range of 4500 K to 7000 K. The light source emits light beams including four color light beams represented by four coordinate values of predicted colors including red, green, blue and yellow in the a* b* coordinate system corresponding to the CIE 1976 L*a*b* color space. The four coordinate values in the a* b* coordinate system can be encompassed by respective circle areas having a radius of, for example, 5, and each having center coordinate values of (41.7, 20.9) for red, (−39.5, 14.3) for green, (8.8, −29.9) for blue and (−10.4, 74.2) for yellow, for example.
Abstract translation:在实际交通环境中,车灯可以提高行人,路边障碍物,其他车辆等的能见度(注意力)。 车辆灯可以被配置为投射具有预定白色的光束,并且可以包括具有4500K至7000K的色温范围的光源。光源发射包括由四个坐标值表示的四个彩色光束的光束 在与CIE 1976 L * a * b *颜色空间相对应的a * b *坐标系中,包括红色,绿色,蓝色和黄色的预测颜色。 a * b *坐标系中的四个坐标值可以由具有例如5的半径的各个圆形区域包围,并且每个具有红色的中心坐标值(41.7,20.9),(-39.5,14.3) 绿色,(8.8,-29.9)为蓝色,(-10.4,74.2)为黄色。
Abstract:
A method of manufacturing a high-strength aluminum alloy extruded product which excels in corrosion resistance and stress corrosion cracking resistance, and is suitably used in applications as structural materials for transportation equipment such as automobiles, railroad carriages, and aircrafts. The method includes extruding a billet of an aluminum alloy containing 0.5% to 1.5% of Si, 0.9% to 1.6% of Mg, 0.8% to 2.5% of Cu, while satisfying the following equations (1), (2), (3), and (4), 3≦Si%+Mg%+Cu%≦4 (1) Mg%≦1.7×Si% (2) Mg%+Si%≦2.7 (3) Cu%/2≦Mg%≦(Cu%/2)+0.6 (4) and further containing 0.5% to 1.2% of Mn, with the balance being Al and unavoidable impurities, into a solid product by using a solid die, or into a hollow product by using a porthole die or a bridge die, thereby obtaining the solid product or the hollow product in which a fibrous structure accounts for 60% or more of an area-fraction of the cross-sectional structure of the product.
Abstract:
A lamp, an optical module, a vehicle headlight, and a method for controlling a color tone of the same can be configured to ensure visibility of the surroundings of a vehicle on a wet road in rainy weather, in dense fog, and on a snowpacked road, for example. The lamp can include a first LED chip which emits blue light, a second LED chip which emits light with a different color from blue. A wavelength conversion layer can be provided in front of light emitting areas of the first and second LED chips in an emitting direction, and can include a wavelength conversion material. A driving control unit can be configured to drive and control the first and second LED chips. The optical module can be configured to include the lamp along with optical components, such as a reflector. A vehicle headlight can include a plurality of optical modules. The control unit can be configured to control the ratio of light from the first and second LED chips, thereby obtaining light of a desired color.
Abstract:
The invention relates to water-repellent composite grains. Each composite grain includes: a first grain; and a low molecular weight polytetrafluoroethylene (PTFE) covering the first grain. The first grain is higher than the PTFE in mechanical strength. With this, the composite grains are improved in mechanical strength. A water-repellent article is produced by anchoring the composite grains to a substrate through an adhesive layer formed on the substrate. The composite grains are partly exposed on the adhesive layer and partly submerged in the adhesive layer. With this, the water-repellent article is made minutely rough. The water-repellent article is improved in mechanical strength and water repellency.
Abstract:
Crystallization of a fluoride glass article is suppressed by treating the surface(s) of the fluoride glass article with a solution of a fluorine-containing alkali metal compound or a fluorine-containing ammonium compound such as, e.g., LiPF.sub.6, NaBF.sub.4 or NH.sub.4 BF.sub.4, in a nonaqueous solvent such as, e.g., ethanol, N,N-dimethylformamide or acetonitrile. The treatment can be made at room temperature.
Abstract:
A graphite fluoride can be produced safely and in high yield on a commercial production scale by a process comprising reacting a carbon material having an average size of 100.mu. to 10 mm with fluorine. Further, when the fluorination reaction is stopped before completion thereof and the graphite fluoride product is subjected to sifting with a sieve to separate a desired graphite fluoride from the raw carbon material remaining unreacted.
Abstract:
A method of preparing graphite fluoride such as (CF).sub.n or (C.sub.2 F).sub.n by heterogeneous contact reaction between a carbon material such as graphite or petroleum coke and fluorine gas at about 200.degree.-550.degree. C. In the gas phase of the reaction system, the total concentration of higher fluorocarbons having more than four carbon atoms formed by side reactions is controlled so as not to become above 3% by volume by, for example, condensation or catalytic decomposition of at least a portion of the higher fluorocarbons in the gas flowed out of the reaction chamber for recirculation. Such control is highly effective for prevention of rapid and violent decomposition of the graphite fluoride existing in the solid phase of the reaction system induced by sudden decomposition of the higher fluorocarbons in the reaction system to lower fluorocarbons.
Abstract:
A novel chemical compound poly-dicarbon monofluoride represented by the formula (C.sub.2 F).sub.n and having a crystalline structure of packing form featured by its layer structure as shown in FIG. 12 hereof stacked with an interlayer spacing of about 9.0 A. Such new compound can be produced under relatively mild reaction conditions and obtained in a yield as large as 100% with respect to not only the carbon material employed but also the fluorine employed. The new compound is black under the formation conditions and of low crystallinity, but it can be easily converted to that of high crystallinity and white color by heat treatment in a fluorine atmosphere. The new compound has a wide variety of uses, for example, as lubricants, stain-resistant and water-repellent materials, cathode materials in high energy primary cells, etc.
Abstract:
A lamp, an optical module, a vehicle headlight, and a method for controlling a color tone of the same can be configured to ensure visibility of the surroundings of a vehicle on a wet road in rainy weather, in dense fog, and on a snowpacked road, for example. The lamp can include a first LED chip which emits blue light, a second LED chip which emits light with a different color from blue. A wavelength conversion layer can be provided in front of light emitting areas of the first and second LED chips in an emitting direction, and can include a wavelength conversion material. A driving control unit can be configured to drive and control the first and second LED chips. The optical module can be configured to include the lamp along with optical components, such as a reflector. A vehicle headlight can include a plurality of optical modules. The control unit can be configured to control the ratio of light from the first and second LED chips, thereby obtaining light of a desired color.
Abstract:
Using a positive active material in powder form such as a metal salt or graphite fluoride, an anode for use in an electric cell, and particularly suitable for use in an organic electrolyte cell, is produced by the steps of dispersing the active material, and a conductive material such as carbon powder where necessary, in a solution of an organic polymer used as binder in a suitable liquid, mixing the dispersion with another liquid in which the polymer is substantially insoluble so as to cause precipitation of the polymer in a state intimately mixed with the active material and the conductive material, separating the solid phase mixture from the liquid phase and drying it, and press-shaping the dried mixture into an anode body of a desired shape. By mixing the binder with the active material in this manner, it is possible to obtain an anode body sufficient in mechanical strength and high in electrochemical activity by using only a very small amount of binder.