Abstract:
To provide a substrate mounting structure with which reliability can be improved. This substrate mounting structure includes an ACF (2) disposed on a surface (1a) of a glass substrate (1) and SMDs (3) mounted on the surface (1a) of the glass substrate (1) via the ACF (2) and disposed in an SMD mounting region (10a) on the surface (1a) of the glass substrate (1). Then, dummy components (4) are respectively disposed in a region adjacent to one side of the SMD mounting region (10a) and in a region adjacent to the other side thereof.
Abstract:
Affixed to a projection (111) of a glass substrate (110) included in a liquid crystal module (100) are a first ACF (150a), which has low surface tack strength but high connection reliability, and a second ACF (150b), which has high component attaching capability attributed to high surface tack strength. With these, an LSI chip (130), electronic components (150), etc., are mounted on the glass substrate (110), so that high-speed electronic component mounting can be achieved while ensuring connection reliability.
Abstract:
A planar lightwave circuit is provided which can be easily fabricated by an existing planar-lightwave-circuit fabrication process, which can lower the propagation loss of signal light and which can convert inputted signal light so as to derive desired signal light. A planar lightwave circuit having a core and a clad which are formed on a substrate, has input optical waveguide(s) (111) which inputs signal light, mode coupling part (112) for coupling a fundamental mode of the inputted signal light to a higher-order mode and/or a radiation mode, or mode re-coupling part (113) for re-coupling the higher-order mode and/or the radiation mode to the fundamental mode, and output optical waveguide(s) (114) which outputs signal light. The mode coupling part or the mode re-coupling part is an optical waveguide which has core width and/or height varied continuously.
Abstract:
A silica-based optical waveguide circuit serves to reduce the time required to production while allowing a spot size converting function to work sufficiently. In a silica-based optical waveguide circuit comprising an input/output waveguide core formed to be thicker than an waveguide core and a tapered portion for connecting the input/output waveguide core and the waveguide core, wherein the waveguide circuit further has a core layer at each side of the input/output waveguide core, a thickness T of the core layer at the side of the input/output waveguide core is smaller than the thickness H of the input/output waveguide core.
Abstract:
A low-cost, high-reliability polarization-independent optical waveguide interferometer is proposed which does not bring about any additional job involved in the insertion of a half-wave plate or excess loss of light. In an optical multi/demultiplexer utilizing optical interference of light waves passing through a plurality of optical waveguides with different lengths, such as an AWG and a Mach-Zehnder interferometer, longitudinal integral values of birefringence values of the individual waveguides, which values are variable or invariable along the waveguides, are made equal for all waveguides 201 and 202. Thus, simply varying the waveguide width can implement polarization-independent operation, or on the contrary implement a polarization beam splitter. For example, the polarization-independent can be implemented by making the core widths, which are averaged in a longitudinal direction of a plurality of optical waveguides with different lengths, wider in a shorter optical waveguide, and narrower in a longer optical waveguide.
Abstract:
An optical waveguide circuit is provided that can reduce or eliminate polarization dependence by reducing or eliminating birefringence. A substrate consists of a silicon substrate, and a cladding and a core are composed of silica-based glass. The core has a multilayer structure composed of a few types of layers with different refractive indices such as first core layers and second core layers stacked in the direction parallel to the substrate. As for the birefringence of the waveguide, the geometrical birefringence caused by the multilayer structure is canceled out by the other birefringence, thereby being able to reduce or eliminate the birefringence of the waveguide.
Abstract:
The invention provides a display panel and display device enabling easy connection to an external connection component depending on the type of a mounted component, and provides a display device manufacturing method allowing a simple manufacturing process. The display panel of the present invention is a display panel in which a thin film transistor array substrate and an opposed substrate are disposed opposing each other. The thin film transistor array substrate has a first routing wiring that is routed at the outer edge of the substrate, a common transfer section that is formed at a position overlapping with the first routing wiring when the substrate surface is viewed from a normal direction, and a first terminal region, having a plurality of terminals formed thereon including a terminal that is joined to the first routing wiring, at an end portion of the substrate. The opposed substrate has a second routing wiring, and a second terminal region, having a plurality of terminals formed thereon including a terminal that is joined to the second routing wiring, at an end portion of the substrate. The first routing wiring and the second routing wiring conduct with each other via the common transfer section.
Abstract:
A planar lightwave circuit is provided which can be easily fabricated by an existing planar-lightwave-circuit fabrication process, which can lower the propagation loss of signal light and which can convert inputted signal light so as to derive desired signal light. A planar lightwave circuit having a core and a clad which are formed on a substrate, has input optical waveguide(s) (111) which inputs signal light, mode coupling part (112) for coupling a fundamental mode of the inputted signal light to a higher-order mode and/or a radiation mode, or mode re-coupling part (113) for re-coupling the higher-order mode and/or the radiation mode to the fundamental mode, and output optical waveguide(s) (114) which outputs signal light. The mode coupling part or the mode re-coupling part is an optical waveguide which has core width and/or height varied continuously.
Abstract:
In a liquid crystal display device (10), stabilizing capacitors (61), bypass capacitors (62) and boosting capacitors (63), which would conventionally be mounted on an FPC board (50), are disposed along long and short input sides of an LSI chip (40) mounted on a projection (20a) of a glass substrate (20) and the capacitors are connected to their respective input terminals of the LSI chip (40) via capacitor traces (71). This makes it possible to narrow the FPC board (50) connected to the liquid crystal display device (10), thereby achieving size reduction of the liquid crystal display device (10) while achieving reduction in manufacturing cost, including processing and material cost of the FPC board (50).
Abstract:
A planar lightwave circuit is provided which can be easily fabricated by an existing planar-lightwave-circuit fabrication process, which can lower the propagation loss of signal light and which can convert inputted signal light so as to derive desired signal light. A planar lightwave circuit having a core and a clad which are formed on a substrate, has input optical waveguide(s) (111) which inputs signal light, mode coupling part (112) for coupling a fundamental mode of the inputted signal light to a higher-order mode and/or a radiation mode, or mode re-coupling part (113) for re-coupling the higher-order mode and/or the radiation mode to the fundamental mode, and output optical waveguide(s) (114) which outputs signal light. The mode coupling part or the mode re-coupling part is an optical waveguide which has core width and/or height varied continuously.