Abstract:
A variety of circuits, methods and devices are implemented for radiofrequency amplifiers. According to one such implementation, a radiofrequency amplifier circuit is implemented in a SMD package. The circuit amplifies a radiofrequency signal having a base-band portion and a plurality of carrier signals frequency-spaced larger than the base-band bandwidth. The circuit includes a radiofrequency transistor connected to a circuit output having a parasitic output capacitance. The source-drain terminal is electrically connected to the circuit output. An internal shunt inductor provides compensation for the parasitic output capacitance. A high-density capacitor is connected between the internal shunt inductor and a circuit ground. The high-density capacitor has a terminal with a surface area can be at least ten times that of a corresponding planar surface.
Abstract:
The integrated microelectronics component comprises an electric conductor forming a transmission line element for a radio frequency electromagnetic wave. This electric conductor is surrounded at least partially by a preferably closed magnetic circuit, formed at least by superposition of a layer of ferromagnetic material having a saturation magnetization value greater than or equal to 800 kA/m and of a layer of magnetic material. The layer of magnetic material then generates a uniaxial magnetic anisotropy in the adjacent ferromagnetic layer. A high magnetization can then be combined with a high anisotropy, thus enabling operation in high frequency ranges, for example about 5 to 20 GHz.
Abstract:
The integrated microelectronics component comprises an electric conductor forming a transmission line element for a radio frequency electromagnetic wave. This electric conductor is surrounded at least partially by a preferably closed magnetic circuit, formed at least by superposition of a layer of ferromagnetic material having a saturation magnetization value greater than or equal to 800 kA/m and of a layer of magnetic material. The layer of magnetic material then generates a uniaxial magnetic anisotropy in the adjacent ferromagnetic layer. A high magnetization can then be combined with a high anisotropy, thus enabling operation in high frequency ranges, for example about 5 to 20 GHz.
Abstract:
A variety of circuits, methods and devices are implemented for radiofrequency amplifiers. According to one such implementation, a radiofrequency amplifier circuit is implemented in a SMD package. The circuit amplifies a radiofrequency signal having a base-band portion and a plurality of carrier signals frequency-spaced larger than the base-band bandwidth. The circuit includes a radiofrequency transistor connected to a circuit output having a parasitic output capacitance. The source-drain terminal is electrically connected to the circuit output. An internal shunt inductor provides compensation for the parasitic output capacitance. A high-density capacitor is connected between the internal shunt inductor and a circuit ground. The high-density capacitor has a terminal with a surface area can be at least ten times that of a corresponding planar surface.