Abstract:
A promoter, which may be used to transform a plant and/or express a gene substantially uniformly in substantially all organs and/or tissues of a plant, and which may include a constitutive expression promoter for transforming a monocot plant. A vector including a promoter, which may include a recombinant plant expression vector. A method of producing a target protein using a vector, and a method of producing a transformed cell and/or plant using a vector. A transformed plant, a transformed seed and a transformed cell are included, which may be formed by the method of producing the same using a vector.
Abstract:
The present invention relates generally to the field of molecular biology and concerns a method for enhancing various economically important yield-related traits in plants. More specifically, the present invention concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding a Harpin-associated Factor G polypeptide (hereinafter termed HpaG″). The present invention also concerns plants having modulated expression of a nucleic acid encoding an HpaG polypeptide, which plants have enhanced yield-related traits relative to control plants. The invention also provides constructs comprising HpaG-encoding nucleic acids, useful in performing the methods of the invention. The present invention also provides a method for enhancing yield-related traits in plants relative to control plants, by modulating (preferably increasing) expression in a plant of a nucleic acid sequence encoding a SWITCH 2/SUCROSE NON-FERMENTING 2 (SWI2/SNF2) polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid sequence encoding a SWI2/SNF2 polypeptide, which plants have enhanced yield-related traits relative to control plants. The invention also provides constructs useful in performing the methods of the invention.
Abstract:
A promoter, which may be used to transform a plant and/or express a gene substantially uniformly in substantially all organs and/or tissues of a plant, and which may include a constitutive expression promoter for transforming a monocot plant. A vector including a promoter, which may include a recombinant plant expression vector. A method of producing a target protein using a vector, and a method of producing a transformed cell and/or plant using a vector. A transformed plant, a transformed seed and a transformed cell are included, which may be formed by the method of producing the same using a vector.
Abstract:
The present invention relates generally to the field of molecular biology and concerns a method for enhancing various economically important yield-related traits in plants. More specifically, the present invention concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding an IAA2-like (auxin/indoleacetic acid 2 like) polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid encoding IAA2-like polypeptide, which plants have enhanced yield-related traits relative to control plants. The invention also provides constructs comprising IAA2-like-encoding nucleic acids, useful in performing the methods of the invention. The present invention also relates generally to the field of molecular biology and concerns a method for improving various plant growth characteristics by modulating expression in a plant of a nucleic acid encoding a NAC10-like polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid encoding a NAC10-like polypeptide, which plants have improved growth characteristics relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention.
Abstract:
A promoter, which may be used to transform a plant and/or express a gene substantially uniformly in substantially all organs and/or tissues of a plant, and which may include a constitutive expression promoter for transforming a monocot plant. A vector including a promoter, which may include a recombinant plant expression vector. A method of producing a target protein using a vector, and a method of producing a transformed cell and/or plant using a vector. A transformed plant, a transformed seed and a transformed cell are included, which may be formed by the method of producing the same using a vector. A PCR primer for a promoter is provided.
Abstract:
The present invention relates generally to the field of molecular biology and concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding a yield increasing polypeptide selected from the group consisting of: phosphoenolpyruvate carboxylase (PEPC), Class III U-Box protein and PQQC protein. The present invention also concerns plants having modulated expression of a nucleic acid encoding yield increasing polypeptide selected from the group consisting of: phosphoenolpyruvate carboxylase (PEPC), Class III U-Box protein and PQQC protein, which plants have enhanced yield-related traits relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention.
Abstract:
The present invention relates generally to the field of molecular biology and concerns a method for enhancing plant yield-related traits relative to control plants. More specifically, the present invention concerns a method for enhancing yield related traits in plants relative to control plants, by modulating, preferably increasing, expression in the roots of a plant, of a nucleic acid sequence encoding a 2-cysteine peroxiredoxin (2-Cys PRX); or by modulating expression of a nucleic acid encoding an ANN polypeptide in a plant. The present invention also concerns plants having modulated, preferably increased, expression in the roots, of a nucleic acid sequence encoding a 2-Cys PRX, or having modulated expression of a nucleic acid encoding an ANN polypeptide, which plants have enhanced yield-related traits relative to control plants. The invention also provides constructs useful in the methods of the invention.
Abstract:
The present invention relates to a method for increasing resistance of monocot plants against abiotic stress which comprises a step of transforming monocot plants with a recombinant plasmid containing a fused gene (TPSP) of trehalose-6-phosphate synthetase (TPS) gene and trehalose-6-phosphate phosphatase (TPP) gene to express the TPSP gene while maintaining normal growth and development characteristics. The present invention can increase the resistance of monocot plants against various stresses so that it can greatly contribute to the improvement of production and quality of valuable agricultural crops. The present invention also relates to a transgenic monocot plant, plant cell, or protoplast transformed with a nucleic acid encoding an enzyme for trehalose biosynthesis, under control of an inducible promoter, that increases tolerance to low temperature, salt, and water stress.
Abstract:
The present invention relates generally to the field of molecular biology and concerns a method for enhancing various economically important yield-related traits in plants. More specifically, the present invention concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding a GSBP-like polypeptide (GSBP: GT-Pase activating protein SH3 domain binding Protein). The present invention also concerns plants having modulated expression of a nucleic acid encoding a GSBP-like polypeptide, which plants have enhanced yield-related traits relative to control plants.
Abstract:
The present invention relates generally to the field of molecular biology and concerns a method for enhancing various economically important yield-related traits in plants. More specifically, the present invention concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding a Harpin-associated Factor G polypeptide (hereinafter termed HpaG”). The present invention also concerns plants having modulated expression of a nucleic acid encoding an HpaG polypeptide, which plants have enhanced yield-related traits relative to control plants. The invention also provides constructs comprising HpaG-encoding nucleic acids, useful in performing the methods of the invention. The present invention also provides a method for enhancing yield-related traits in plants relative to control plants, by modulating (preferably increasing) expression in a plant of a nucleic acid sequence encoding a SWITCH 2/SUCROSE NON-FERMENTING 2 (SWI2/SNF2) polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid sequence encoding a SWI2/SNF2 polypeptide, which in plants have enhanced yield-related traits relative to control plants. The invention also provides constructs useful in performing the methods of the invention.