Abstract:
Methods of lining and/or filling gaps on a substrate by creating flowable silicon oxide-containing films are provided. The methods involve introducing vapor-phase silicon-containing precursor and oxidant reactants into a reaction chamber containing the substrate under conditions such that a condensed flowable film is formed on the substrate. The flowable film at least partially fills gaps on the substrates and is then converted into a silicon oxide film. In certain embodiments, the methods involve using a catalyst, e.g., a nucleophile or onium catalyst, in the formation of the film. The catalyst may be incorporated into one of the reactants and/or introduced as a separate reactant. Also provided are methods of converting the flowable film to a solid dielectric film. The methods of this invention may be used to line or fill high aspect ratio gaps, including gaps having aspect ratios ranging from 3:1 to 10:1.
Abstract:
The invention relates to the production of nanoporous silica dielectric films and to semiconductor devices and integrated circuits comprising these improved films. The nanoporous films of the invention are prepared using silicon containing pre-polymers and are prepared by a process that allows crosslinking at lowered gel temperatures by means of a metal-ion-free onium or nucleophile catalyst.
Abstract:
Methods of lining and/or filling gaps on a substrate by creating flowable silicon oxide-containing films are provided. The methods involve introducing vapor-phase silicon-containing precursor and oxidant reactants into a reaction chamber containing the substrate under conditions such that a condensed flowable film is formed on the substrate. The flowable film at least partially fills gaps on the substrates and is then converted into a silicon oxide film. In certain embodiments, the methods involve using a catalyst, e.g., a nucleophile or onium catalyst, in the formation of the film. The catalyst may be incorporated into one of the reactants and/or introduced as a separate reactant. Also provided are methods of converting the flowable film to a solid dielectric film. The methods of this invention may be used to line or fill high aspect ratio gaps, including gaps having aspect ratios ranging from 3:1 to 10:1.
Abstract:
Multi-cycle methods result in dense, seamless and void-free dielectric gap fill are provided. The methods involve forming liquid or flowable films that partially fill a gap, followed by a solidification and/or anneal process that uniformly densifies the just-formed film. The thickness of the layer formed is such that the subsequent anneal process creates a film that does not have a density gradient. The process is then repeated as necessary to wholly or partially fill or line the gap as desired. The methods of this invention may be used to line or fill high aspect ratio gaps, including gaps having aspect ratios greater than about 6:1 with widths less than about 0.13 μm.
Abstract:
The invention relates to the production of nanoporous silica dielectric films and to semiconductor devices and integrated circuits comprising these improved films. The nanoporous films of the invention are prepared using silicon containing pre-polymers and are prepared by a process that allows crosslinking at lowered gel temperatures by means of a metal-ion-free onium or nucleophile catalyst.