摘要:
Methods of bonding components for fabricating electronic assemblies and electronic assemblies including bonded components are provided herein. In one example, a method of bonding components for fabricating an electronic assembly comprises the steps of disposing a first layer of a first high temperature metal-containing paste adjacent to a first component. A second layer of a second high temperature metal-containing paste is disposed adjacent to a second component. A nanostructured multilayer reactive foil is disposed between the first and second layers. The nanostructured multilayer reactive foil is activated to sinter the first and second layers and bond the first and second components.
摘要:
An attachment arrangement for a heat sink includes, but is not limited to, an attachment surface defined on the heat sink. A thermally conductive adhesive is disposed on the attachment surface. A substrate is attached to the attachment surface via the thermally conductive adhesive. The thermally conductive adhesive defines a discontinuity that is disposed in a delamination path of the thermally conductive adhesive.
摘要:
Electronic assemblies and methods of fabricating electronic assemblies are provided herein. The electronic assembly includes a heat sink, a metal layer, and an electrical insulator layer. The metal layer defines at least a portion of an electrical circuit. The electrical insulator layer is disposed between the heat sink and the metal layer and is directly bonded to the heat sink.
摘要:
Methods of bonding components for fabricating electronic assemblies and electronic assemblies including bonded components are provided herein. In one example, a method of bonding components for fabricating an electronic assembly comprises the steps of disposing a first layer of a first high temperature metal-containing paste adjacent to a first component. A second layer of a second high temperature metal-containing paste is disposed adjacent to a second component. A nanostructured multilayer reactive foil is disposed between the first and second layers. The nanostructured multilayer reactive foil is activated to sinter the first and second layers and bond the first and second components.