Abstract:
The present invention relates to a method for making a solid electrolytic capacitor having a low equivalent series resistance by impregnating a porous capacitor pellet with conductive polymer. An oxidized pellet is dipped in a high concentration conductive polymer solution to deposit the polymer in doped (conductive) form. The solution also contains a crosslinking agent to prevent redissolution of the polymer when the pellet is re-dipped. After dipping, the solvent in the polymer solution is evaporated and a conductive film formed. In order to evaporate the solvent quickly, the solvent should have a boiling point of 80-220° C. and preferably a boiling point of 100-150° C. The conductive polymer film has a low resistivity (less than 1 ohm-cm, preferably less than 0.2 ohm-cm).
Abstract:
Conductive polymers are prepared from a stabilized solution containing a monomer, an Fe(III) oxidizing agent, and a mixed solvent. The solvents are selected to stabilize the Fe(III) oxidizing agent and monomer in solution while allowing highly conducting polymers to be produced upon evaporating the lower-boiling solvent. The higher-boiling solvent does not appreciably complex with Fe(III), while the lower-boiling solvent forms a weak complex with Fe(III). The mixed-solvent system of the present invention may be used for preparing a conductive polymer counter electrode in a solid tantalum capacitor by polymerizing the monomer inside a porous tantalum pellet.
Abstract:
The adhesion of a conductive polymer film to an oxidized porous pellet anode is improved by the incorporation of a silane coupling agent in the polymer impregnating solution. The incorporation of the silane coupling agent also decreases leakage current and dissipation factor. Suitable silanes are those of the general formula (R1—R3)—Si—(OR2)3. Each of R2 and R3 is a C1-C6 alkyl group such as methyl, ethyl, or propyl R1 can be chosen from a wide variety of organic functional groups such as epoxy, glycidoxy, amino, and pyrrole. The most preferred silane is 3-glycidoxypropyltrimethoxysilane.
Abstract:
The adhesion of a conductive polymer film to an oxidized porous pellet anode is improved by the incorporation of a silane coupling agent in the polymer impregnating solution. The incorporation of the silane coupling agent also decreases leakage current and dissipation factor. Suitable silanes are those of the general formula (R.sup.1 --R.sup.3)--Si--(OR.sup.2).sub.3. Each of R.sup.2 and R.sup.3 is a C.sub.1 -C.sub.6 alkyl group such as methyl, ethyl, or propyl. R.sup.1 can be chosen from a wide variety of organic functional groups such as epoxy, glycidoxy, amino, and pyrrole. The most preferred silane is 3-glycidoxypropyltrimethoxysilane.
Abstract:
Conductive polymers are prepared from a stabilized solution containing a monomer, an Fe(III) oxidizing agent, and a mixed solvent. The solvents are selected to stabilize the Fe(III) oxidizing agent and monomer in solution while allowing highly conducting polymers to be produced upon evaporating the lower-boiling solvent. The higher-boiling solvent does not appreciably complex with Fe(III), while the lower-boiling solvent forms a weak complex with Fe(III). The mixed-solvent system of the present invention may be used for preparing a conductive polymer counter electrode in a solid tantalum capacitor by polymerizing the monomer inside a porous tantalum pellet.
Abstract:
Conductive polymers are prepared from a stabilized solution containing a monomer, an Fe(III) oxidizing agent, and a mixed solvent. The solvents are selected to stabilize the Fe(III) oxidizing agent and monomer in solution while allowing highly conducting polymers to be produced upon evaporating the lower-boiling solvent. The higher-boiling solvent does not appreciably complex with Fe(III), while the lower-boiling solvent forms a weak complex with Fe(III). The mixed-solvent system of the present invention may be used for preparing a conductive polymer counter electrode in a solid tantalum capacitor by polymerizing the monomer inside a porous tantalum pellet.