摘要:
A gas turbine inlet fogging system using electrohydrodynamic (EHD) atomization is disclosed. In one embodiment, the inlet fogging system includes: a gas turbine system including an air inlet duct, and a plurality of electrohydrodynamic (EHD) nozzles coupled to a water supply, the plurality of EHD nozzles configured to provide a water-spray for reducing a temperature of inlet air drawn into the air inlet duct. In another embodiment, an inlet fogging system for a gas turbine system includes: a plurality of electrohydrodynamic (EHD) nozzles, and a water supply in fluid communication with the plurality of EHD nozzles.
摘要:
A turbomachine system includes a compressor having a compressor intake and a compressor extraction outlet, and an inlet system fluidly connected to the compressor intake and the compressor extraction outlet. The inlet system includes a plenum having a first end portion that extends to a second end portion through an intermediate portion. The inlet system also includes a heating system having a plurality of conduits extending horizontally through the intermediate portion of the plenum and arranged in a vertical relationship. Heated air from the compressor extraction outlet passes through the plurality of conduits and raises a temperature of ambient air passing through the plenum and into the compressor intake.
摘要:
An embodiment of the present invention takes the form of an IBH system that has two conduits, which are positioned close to a downstream end of a silencer section. This arrangement may reduce the overall pressure drop associated with the inlet system. This arrangement may also promote a substantially uniform mixing between the cooler ambient air and the warmer heated air.
摘要:
An embodiment of the present invention takes the form of an IBH system that has two conduits, which are positioned close to a downstream end of a silencer section. This arrangement may reduce the overall pressure drop associated with the inlet system. This arrangement may also promote a substantially uniform mixing between the cooler ambient air and the warmer heated air.
摘要:
A gas turbine wet compression system using electrohydrodynamic (EHD) atomization is disclosed. In one embodiment, the wet compression system includes: a gas turbine system including an air inlet duct, and a plurality of electrohydrodynamic (EHD) nozzles coupled to a water supply, the plurality of EHD nozzles configured to provide a water-spray for reducing a temperature of inlet air drawn into the air inlet duct. In another embodiment, a wet compression system for a gas turbine system includes: a plurality of electrohydrodynamic (EHD) nozzles, and a water supply in fluid communication with the plurality of EHD nozzles.
摘要:
A turbomachine system includes a compressor having a compressor intake and a compressor extraction outlet, and an inlet system fluidly connected to the compressor intake and the compressor extraction outlet. The inlet system includes a plenum having a first end portion that extends to a second end portion through an intermediate portion. The inlet system also includes a heating system having a plurality of conduits extending horizontally through the intermediate portion of the plenum and arranged in a vertical relationship. Heated air from the compressor extraction outlet passes through the plurality of conduits and raises a temperature of ambient air passing through the plenum and into the compressor intake.
摘要:
An embodiment of the present invention takes the form of an IBH system that has a single conduit, which is positioned close to a downstream end of a silencer section. This arrangement may reduce the overall pressure drop associated with the inlet system. This arrangement may also promote a substantially uniform mixing between the cooler ambient air and the warmer heated air.
摘要:
An embodiment of the present invention takes the form of an IBH system that has a single conduit, which is positioned close to a downstream end of a silencer section. This arrangement may reduce the overall pressure drop associated with the inlet system. This arrangement may also promote a substantially uniform mixing between the cooler ambient air and the warmer heated air.