Abstract:
A planarization method used in fabricating an embedded dynamic random access memory (DRAM). After a number of metal-oxide semiconductor (MOS) transistors and a number of capacitors are formed on a semiconductor substrate, a first inter-layer di-electric (ILD) layer is formed over the substrate. The embedded DRAM is divided into a memory region and a logic region. Next, planarization is performed. A dummy metal layer is formed and coupled to an interchangeable source/drain region of the MOS transistor in the logic region. Then a second ILD layer is formed over the logic region to compensate difference in height between the logic region and the memory region. Then, a via hole/plug is formed in the logic region to extend the first metal layer. A second metal layer with required contact window/plugs is formed over the substrate.
Abstract:
A method for backside grinding a semiconductor wafer and forming a contamination free bonding pad connection. The method comprises forming a passivation layer over a metal layer. Applying a photoresist pattern with an opening which will define a bonding pad area and removing the passivation layer exposed in the opening. Next, the photoresist is removed, but a polymer residue is often formed on the surfaces of the passivation layer surrounding the bonding pad. In a novel step, the residue is removed using an etchant containing Dimethylsulfoxide (D.M.D.O.) aud Monoethanolamine (M.E.A.) and is followed by au oxygen plasma treatment. Next, the device side of the wafer is covered with a protective tape and the backside of the wafer is grouud back. The tape is removed revealing a contamination free bonding pad area. A bonding connection is then made to the bonding pad.
Abstract:
A new method of metallization using a tungsten plug is described. Semiconductor device structures are provided in and on a semiconductor substrate. An insulating layer covers the semiconductor device structures wherein a contact opening is made through the insulating layer to the semiconductor substrate. A barrier layer is deposited conformally over the surface of the insulating layer and within the contact opening. A stress buffer layer is deposited overlying the barrier layer wherein the stress buffer layer prevents volcano defects. A tungsten plug is formed within the contact opening to complete the formation of the tungsten plug metallization without volcano defects in the fabrication of an integrated circuit device.
Abstract:
Plasma reactors are used extensively in the manufacture of integrated circuits for the deposition and etching of thin films at low temperatures. Their range of operating temperatures and gas pressures make them highly susceptible to build-up of deposits on the inner surfaces of the reaction chamber which subsequently become dislodged by vibrations, stresses, and other aggravations and are dispersed within the system as particulates. The monitoring of particulate accumulation on wafers is conventionally done by subjecting a test wafer to a simulated operation within the tool under gas flow alone. Some types of plasma reactors incorporate oscillating gas dispersion housings in order to improve homogeneity of the gas mixture. The motion of these housings can induce significant particle displacement within the chamber. The correct monitoring procedure for these tools must therefore include the motion of the distribution housing in addition to the conventional procedures.
Abstract:
A method of fabricating a node contact opening is described. A dielectric layer is formed on a substrate. A first conductive layer is formed on the dielectric layer. The first conductive layer is etched to form a trapezoidally cross-sectioned opening exposing a portion of the dielectric layer. The dielectric layer exposed by the trapezoidally cross-sectioned opening is etched to form a node contact opening in the dielectric layer exposing a part the substrate. A second conductive layer is formed to fill the node contact opening and in contact with the conductive layer.