Abstract:
The invention relates to a method for improving the reduction degree of metal components in a chromite concentrate when smelting ferroalloy suitable for manufacturing of stainless steel. The chromite concentrate is fed together with nickel-containing raw material so that by means the amount of nickel-containing raw material it is achieved a desired reduction degree for the metal components of ferroalloy.
Abstract:
The invention relates to a method for producing a ferroalloy containing nickel. From a fine-grained raw material containing iron and chromium and a fine-grained raw material containing nickel, a mixture is formed with binding agent, the mixture is agglomerated so that first formed objects of desired size are obtained. The objects formed are heat treated in order to strengthen the objects so that the heat treated objects withstand conveyance and loading into a smelter furnace. Further, the objects are smelted under reducing circumstances in order to achieve ferrochromenickel, a ferroalloy of a desired composition containing at least iron, chromium and nickel.
Abstract:
The invention relates to a method for producing a ferroalloy containing nickel. From a fine-grained raw material containing iron and chromium and a fine- grained raw material containing nickel, a mixture is formed with binding agent, the mixture is agglomerated so that first formed objects of desired size are obtained. The objects formed are heat treated in order to strengthen the objects so that the heat treated objects withstand conveyance and loading into a smelter furnace. Further, the objects are smelted under reducing circumstances in order to achieve ferrochromenickel, a ferroalloy of a desired composition containing at least iron, chromium and nickel.
Abstract:
The invention relates to a method for producing a ferroalloy containing nickel. From a fine-grained raw material containing iron and chromium and a fine-grained raw material containing nickel, a mixture is formed with binding agent, the mixture is agglomerated so that first formed objects of desired size are obtained. The objects formed are heat treated in order to strengthen the objects so that the heat treated objects withstand conveyance and loading into a smelter furnace. Further, the objects are smelted under reducing circumstances in order to achieve ferrochromenickel, a ferroalloy of a desired composition containing at least iron, chromium and nickel.