摘要:
A thermal transfer sheet that can meet demands for increased printing speed in thermal transfer, increased density of thermally transferred images, and higher quality and, at the same time, particularly can suppress fusing to image receiving sheets and abnormal transfer. The thermal transfer sheet includes a base material, a heat resistant slip layer provided on one side of the base material, and an adhesive layer and a dye layer provided in that order on the other side of the base material, wherein the adhesive layer includes a specific polyvinylpyrrolidone resin.
摘要:
This invention provides an azomethine compound that can realize a good coupling reaction and, at the same time, can significantly reduce the production cost of the azomethine compound, the azomethine compound comprising a pyridine ring bonded through a nitrogen atom to a 1H-pyrazolo[1,5-b][1,2,4]triazole ring. The azomethine compound is represented by formula (M-I): wherein R1 represents a phenyl group or a naphthyl group optionally substituted by an alkyl group or a halogen; and R2 and R3 each independently represent a C2-4 (number of carbon atoms) alkyl group.
摘要:
Disclosed is a thermal transfer sheet that can meet demands for increased printing speed in thermal transfer, higher density of thermally transferred images, and higher quality. The thermal transfer sheet comprises a substrate and an adhesive layer and a dye layer provided in that order on one side of the substrate, wherein the adhesive layer comprises a polyvinylpyrrolidone resin and a composition for suppressing hygroscopic properties of the polyvinylpyrrolidone resin.
摘要:
This invention provides an azomethine compound that can realize a good coupling reaction and, at the same time, can significantly reduce the production cost of the azomethine compound, the azomethine compound comprising a pyridine ring bonded through a nitrogen atom to a 1H-pyrazolo[1,5-b][1,2,4]triazole ring. The azomethine compound is represented by formula (M-I): wherein R1 represents a phenyl group or a naphthyl group optionally substituted by an alkyl group or a halogen; and R2 and R3 each independently represent a C2-4 (number of carbon atoms) alkyl group.
摘要:
Disclosed is a thermal transfer sheet that can meet demands for increased printing speed in thermal transfer, higher density of thermally transferred images, and higher quality. The thermal transfer sheet comprises a substrate and an adhesive layer and a dye layer provided in that order on one side of the substrate, wherein the adhesive layer comprises a polyvinylpyrrolidone resin and a composition for suppressing hygroscopic properties of the polyvinylpyrrolidone resin.
摘要:
A thermal transfer sheet that can meet demands for increased printing speed in thermal transfer, increased density of thermally transferred images, and higher quality and, at the same time, particularly can suppress fusing to image receiving sheets and abnormal transfer. The thermal transfer sheet includes a base material, a heat resistant slip layer provided on one side of the base material, and an adhesive layer and a dye layer provided in that order on the other side of the base material, wherein the adhesive layer includes a specific polyvinylpyrrolidone resin.
摘要:
An image formation method and a thermal transfer sheet for use in the image formation method are provided. According to the image formation method and the thermal transfer sheet, an intermediate transfer recording medium comprising a substrate film and a transfer part, comprising at least a receptive layer, provided separably on the substrate film is used, and, at the time of the transfer of the transfer part in the intermediate transfer recording medium onto an object, the transfer of the transfer part onto the object in its nontransfer region, onto which the transfer part should not be transferred, can be avoided without installing any special ancillary tool on an image forming apparatus. In the method for image formation, a thermal transfer sheet comprising a substrate and at least a peel-off layer provided on the substrate is provided. Further, an intermediate transfer recording medium comprising a substrate film and a transfer part, comprising at least a receptive layer, provided separably on the substrate film is provided. The thermal transfer sheet and the intermediate transfer recording medium are put on top of each other so that the peel-off layer in the thermal transfer sheet is brought into contact with the transfer part in the intermediate transfer recording medium. The assembly is heated to remove the transfer part in its predetermined region from the intermediate transfer recording medium. The transfer part is then retransferred from the intermediate transfer recording medium onto an object. That is, the transfer part in its predetermined region in the intermediate transfer recording medium is transferred onto the thermal transfer sheet side provided with the peel-off layer and is separated from the intermediate transfer recording medium side.
摘要:
Disclosed is a thermal transfer sheet that can meet demands for increased printing speed in thermal transfer, higher density of thermally transferred images, and higher quality. The thermal transfer sheet comprises a substrate and an adhesive layer and a dye layer provided in that order on one side of the substrate, wherein the adhesive layer comprises a polyvinylpyrrolidone resin and a composition for suppressing hygroscopic properties of the polyvinylpyrrolidone resin.
摘要:
In an ink composition comprising a phosphoric ester and a dye, if the phosphoric ester is composed of an acid-type phosphoric ester and a neutralized-type phosphoric ester, the phosphoric ester and the dye hardly react with each other. Therefore, when such an ink composition is used to form a dye layer, a constituent layer of a heat transfer printing sheet, the discoloration or fading of the dye layer is minimized. Further, a heat transfer printing sheet comprising a dye layer formed by using this ink composition shows improved separability from an image-receiving sheet after an image is thermally transferred to the image-receiving sheet, regardless of the material for the substrate of the image-receiving sheet. It is thus possible to obtain an excellent image on an image-receiving sheet.