Abstract:
A transmitting apparatus includes a frame dividing circuit that maps frame data of each of a plurality of frames whose period is different from each other into one or a plurality of internal frames having a fixed frame period and a fixed transmission rate, based on a predetermined internal clock; a cross-connect circuit that cross-connects the frame data of each in a time division multiplexing system based on the internal clock in units of the internal frames; and a frame combining circuit that demaps, into any of the plurality of frames, or multiplexes, data of one or a plurality of internal frames cross-connected by the cross-connect circuit.
Abstract:
A transmission apparatus includes a processor configured to recognize a number of working failures and a number of protection failures on a network for transmission of wavelength-multiplexed signal light, the number of working failures being the number of failures in signal light in wavelengths at a working entity and the number of protection failures being the number of failures in signal light in wavelengths at a protection entity, configured to perform path switching for each group of signal light in wavelengths that are different from each other and configured to select, when multiple failures occur, restoration processing, on a basis of the number of working failures and the number of protection failures.
Abstract:
An apparatus for mapping multiple lower-speed signal transmission frames to a higher-speed signal transmission frame. The apparatus includes buffers configured to buffer the lower-speed signal transmission frames, determination units configured to determine frequency justification information for the lower-speed signal transmission frames, a barrel shifter configured to receive signals output from the buffers, and a controller configured to control the barrel shifter to map the lower-speed signal transmission frames to the higher-speed signal transmission frame based on external settings for the respective lower-speed signal transmission frames and the frequency justification information determined by the determination units. When the minimum unit of the lower-speed signal transmission frames is a channel, the number of the buffers and the number of the determination units correspond to the maximum number of channels that can be multiplexed in the higher-speed signal transmission frame.
Abstract:
An optical transmission system, where in an optical transmitter a detection bit having a specific pattern set according to the number of bits to be transmitted within one symbol time, is imparted with respect to a transmission signal in which transmission information has been encoded according to a preset format, and an optical signal generated by modulating light according to the transmission signal is transmitted to a transmission line. In an optical receiver, logic inversion or bit swap of received data is detected and compensated by using the detection bit included in the received signal, a decoding process of the compensated received signal is executed. As a result, when an optical signal capable of transmitting multi-bit information within one symbol time is transferred, it is possible to realize excellent transmission characteristics, by reliably compensating an error in received data caused by the modulation format or the multiplex system of the optical signal.
Abstract:
There is provided topology information including connection states among nodes in a network, and port information including restriction conditions on connectivity among ports within a restricted node. A path search apparatus finds a first path having the minimum total link-cost among a plurality of paths. The topology information is changed so that the first path is not searched for as a path having the minimum total link-cost among the plurality of paths, and the port information is changed based on a port connectivity change rule. Then, the path search apparatus finds a second path different from the first path, based on the changed port information and the changed topology information, and reconfigures a pair of link-disjoint paths satisfying the restriction conditions imposed on the restricted node, by removing a link shared by both the first and second paths from the original topology information.
Abstract:
A network design apparatus includes an information acquiring unit acquiring optical network information, a section dividing unit dividing an optical network into linear sections, a combination candidate determining unit determining candidates for combinations of various kinds of optical transmission equipment to be placed in each station in each of the linear sections, a noise amount upper limit determining unit determining an upper limit to the amount of noise allowed for each wavelength path, and an equipment placement unit solving an integer programming problem having an objective function that minimizes the cost of the optical transmission equipment and OEO regenerators, subject to the constraints that one optical transmission equipment combination is selected for each linear section and that the number of OEO regenerators necessary for each wavelength path is determined by the cumulative amount of noise of the wavelength path and the noise upper limit determined for the wavelength path.
Abstract:
A transmission apparatus stores frame data of a first frame in a second frame having a bit rate different from that of the first frame through regulation of the amount of stuffs to be stored in the second frame. The transmission apparatus includes: a storage unit storing the first-frame frame data; a first control unit controlling a timing of writing the first-frame frame data in the storage unit based on first stuff information indicating the amount of stuffs contained in the first frame; an arithmetic and logic unit obtaining second stuff information indicating the amount of stuffs to be contained in the second frame based on a bit rate ratio between the first frame and the second frame; and a second control unit controlling a timing of reading out the first-frame frame data stored in the storage unit based on the second stuff information.
Abstract:
A transmission apparatus exercises insertion control for inserting a client signal and a stuff byte into a payload area in a frame into which the client signal is to be mapped, and sends the frame after the insertion control. In addition, the transmission apparatus inserts the client signal or the stuff byte in columns of the frame into the payload area except a leading column.
Abstract:
A signal transmission method includes causing each of a plurality of nodes to transfer, using the actually used line, a second signal in a second layer, in which one or a plurality of first signals in a first layer are contained, to a node adjacent in the first or the second direction when each of the plurality of nodes transmits or receives the first signal, when no failure occurs in a transmission path in a network, and causing a first node, located at an end of a failure point, to switch a transmission direction of the second signal and to send out the second signal to the backup line, and causing a second node, which is a transmission source or a reception destination of the first signal, to select one of the first and second directions, when a failure occurs in the transmission path in the network.
Abstract:
A node device receives supervisory control information on a dedicated wavelength different from a wavelength of signal light, which is input from an input port together with the signal light, and extracts, from signal light to be output from an output port, information superposed on an optical main signal of the signal light. Then, it is confirmed whether or not the signal light to be output and the supervisory control information correspond by using the extracted information, and supervisory control information corresponding to the signal light to be output is transmitted on the dedicated wavelength from the output port.