Abstract:
Aspects of a method and system for compensating temperature readings from a temperature sensing crystal integrated circuit are provided. An electronic device may digitize a temperature indication received from a temperature sensing circuit, digitize one or more calibration voltages received from said temperature sensing circuit, and calculate a compensated temperature indication utilizing the digitized calibration voltage(s), and the digitized temperature indication, and data from a table that characterizes behavior of the temperature sensing circuit as a function of temperature. One or more circuits in the electronic device may be controlled based on the compensated temperature indication. The compensated temperature indication may compensate for a gain error and/or offset error of a digital to analog converter that digitizes the temperature indication and the calibration voltage(s). There may be two calibration voltages.
Abstract:
Aspects of a method and system for compensating temperature readings from a temperature sensing crystal integrated circuit are provided. In this regard, a temperature indication and calibration voltages from a temperature sensing crystal integrated circuit (TSCIC) may be digitized and the digital signals may be utilized to calculate a compensated temperature indication. Data derived from a memory integrated within the TSCIC may be retrieved based on the compensated temperature indication. The retrieved data may be utilized to control operation of one or more circuits. The compensated temperature indication may be calculated by removing a gain error and/or offset error from the digitized temperature indication. The compensated temperature indication may be utilized as an index for a data table. The compensated temperature indication may be a normalized compensated temperature indication. The calibration voltages may include a minimum voltage and/or a maximum voltage that the TSCIC is operable to output.
Abstract:
Methods and systems for improved feedback processing in delta-sigma modulators, including single bit and multi-bit delta-sigma modulators, continuous-time and discrete-time delta-sigma modulators, and digital and/or analog feedback loops. One or more processes are performed in a pipeline having a higher throughput rate than a throughput rate of a delta-sigma modulator. Any of a variety of processes and combinations of processes can be performed in the pipeline including, without limitation, quantization, digital signal processing, and/or feedback digital-to-analog conversion.
Abstract:
Methods and systems for improved feedback processing in delta-sigma modulators, including single bit and multi-bit delta-sigma modulators, continuous-time and discrete-time delta-sigma modulators, and digital and/or analog feedback loops. One or more processes are performed in a pipeline having a higher throughput rate than a throughput rate of a delta-sigma modulator. Any of a variety of processes and combinations of processes can be performed in the pipeline including, without limitation, quantization, digital signal processing, and/or feedback digital-to-analog conversion.
Abstract:
A cooking appliance includes a grilling grate supported directly above at least one heating element and situated adjacent to a downdraft grill. The grilling grate includes structure to effectively shield the heating element(s) from an air flow generated during operation of the downdraft system. More specifically, the grilling grate includes a grilling surface on an upper side, and a plurality of conductive heat members on a lower side. The conductive heat members have side portions which extend about the heating element in order to cloak the heating element from the effects of the airflow produced by the downdraft system thereby providing a more efficient means of energy transfer to the grilling surface.
Abstract:
A low drop-out voltage regulator is compensated by providing a compensation capacitor across an output terminal of the regulator and an output lead of an input stage which compares a reference voltage and a voltage derived from a regulated output signal at the output terminal. The output from the input stage is inverted without gain before being provided to an output stage. This inversion allows Miller compensation with the compensation capacitor.
Abstract:
A source-follower transistor based buffer provides high linearity. A replica transistor is used to generate a replica voltage substantially equal to the output voltage of the buffer. The replica voltage is level shifted by a level shift circuit and applied at the drain of the source-follower transistor to improve the linearity of the buffer. The buffer may be used in conjunction with a switched-capacitor sampling circuit. A damping circuit may be used to reduce charge glitches due to sampling. The damping circuit may be a low pass filter. The buffer may be used in an interface circuit that produces an output signal from an input signal and controls the level of the output signal.
Abstract:
In a high-fidelity digital modulator, a mapper is provided to minimize quantization noise, jitter, and cross-talk between multiple digital-to-analog or analog-to-digital converters. The mapper receives a quantized level from a quantizer and maps the quantized level to an output sequence. The mapper includes a table defining multiple sequences corresponding to each quantized level. Each sequence includes two or more symbols, having one of multiple values. The mapper also includes a generator that selects one of the multiple sequences as the output sequence. The last symbol of a first output sequence is equal to the first symbol of the next output sequence and so on. The generator selects the output sequence by alternating between a first and a second sequence for each quantized level received. The generator selects the output sequence by alternating between sequences having a positive and a negative common mode energy for each odd valued quantized level received.
Abstract:
A gas burner mounting assembly includes a gas injector having a main body portion positioned between a chassis member of a gas cooking appliance and a ceramic based cooktop of the appliance. The gas injector also includes an upper body portion which extends through an aperture formed in the cooktop. A burner retention bracket is interposed between the main body portion of the gas injector and an underside of the cooktop. A resilient support preferably acts between the gas injector and the cooktop, although no rigid attachment is made between these elements. The gas injector is mechanically, fixedly secured to the cooktop in order to allow the gas injector to flex with the cooktop.