Abstract:
A method for producing a spinning solution for producing a polymer fiber, particularly a p-aramid fiber, the polymer being blended with a solvent, mixed, melted, homogenized, and degassed and then discharged, liquid sulfuric acid being used as the solvent and at least the mixing, homogenization, and degassing taking place in a preferably continuously operated single or double cell reactor (1).
Abstract:
A process for thermal separation of a solution comprised of a thermoplastic polymer and a solvent involves heating a solvent under pressure above a critical point of the solvent; decompressing the heated solvent in a first vessel, such that a polymer-rich and a low-polymer phase form; and supplying the polymer-rich phase to a second vessel. In embodiments, on entry into the second vessel, a pressure jump occurs, the pressure jump leading to a thermal flash in the second vessel such that a polymer part of the polymer-rich phase rises to at least 70%, and a resulting polymer-rich solution is provided.
Abstract:
A process for continuously performing polymerization processes, wherein monomer(s), catalysts, and initiators are added continuously to a backmixed mixing kneader (1-1.3) with a length/diameter ratio of 0.5-3.5 and backmixed therein with already reacted product, and the reacted product is simultaneously drawn off continuously from the mixing kneader (1-1.3).
Abstract:
A process for thermal separation of a solution comprised of a thermoplastic polymer and a solvent involves heating a solvent under pressure above a critical point of the solvent; decompressing the heated solvent in a first vessel, such that a polymer-rich and a low-polymer phase form; and supplying the polymer-rich phase to a second vessel. In embodiments, on entry into the second vessel, a pressure jump occurs, the pressure jump leading to a thermal flash in the second vessel such that a polymer part of the polymer-rich phase rises to at least 70%, and a resulting polymer-rich solution is provided.
Abstract:
A prosthetic foot (124) incorporates a foot keel (165) and a calf shank (126) connected to the foot keel to form an ankle joint area of the prosthetic foot. A device (125) connected between the upper end of the calf shank and the lower portion of the prosthesis can be used to assist posterior movement of the upper end of a calf shank and control anterior movement of the upper end of the calf shank during use of the prosthesis. The device (125) has springs which store energy during force loading with anterior motion of the upper end of the calf shank in gait and which, during force unloading, return the stored energy as kinetic power for adding to the propulsive force on the user's body generated by the prosthesis in gait.
Abstract:
A process for the continuous thermal treatment of mixed substances, especially of solutions, suspensions and emulsions, wherein the continuous treatment of the mixed substances is divided into a main vaporization and a degassing stage, in which instance the main vaporization and the degassing take place in each case takes place in a separate mixer-kneader.
Abstract:
A process for continuously performing polymerization processes, wherein monomer(s), catalysts, and initiators are added continuously to a backmixed mixing kneader (1-1.3) with a length/diameter ratio of 0.5-3.5 and backmixed therein with already reacted product, and the reacted product is simultaneously drawn off continuously from the mixing kneader (1-1.3).
Abstract:
A method for producing a spinning solution for producing a polymer fiber, particularly a p-aramid fiber, the polymer being blended with a solvent, mixed, melted, homogenized, and degassed and then discharged, liquid sulfuric acid being used as the solvent and at least the mixing, homogenization, and degassing taking place in a preferably continuously operated single or double cell reactor (1).
Abstract:
A process for the continuous thermal treatment of mixed substances, especially of solutions, suspensions and emulsions, wherein the continuous treatment of the mixed substances is divided into a main vaporization and a degassing stage, in which instance the main vaporization and the degassing take place in each case takes place in a separate mixer-kneader.