摘要:
An electrode catalyst for a fuel cell consists principally of a carbon support, and a platinum catalyst or a platinum-alloy catalyst supported on the carbon support. In the electrode catalyst, at least 0.7 mmol of an acid per gram of the electrode catalyst is present on the carbon support.
摘要:
An electrode catalyst for a fuel cell, which has improved performance compared with conventional platinum alloy catalysts, a method for producing the electrode catalyst, and a polymer electrolyte fuel cell using the electrode catalyst are provided. The electrode catalyst for a fuel cell comprises a noble-metal-non-precious metal alloy that has a core-shell structure supported on a conductive carrier. The composition of the catalyst components of the shell is such that the amount of the noble metal is greater than or equal to the amount of the non-precious metal.
摘要:
A catalyst for purifying exhaust gases comprises a catalyst carrier made of potassium titanate and a noble metal loaded on the catalyst carrier. The catalyst carrier is substantially free from alumina. This catalyst can oxidize at least hydrocarbons in exhaust gases at a high catalytic activity even at low temperatures, and at the same time can suppress SO.sub.2 from converting into sulfates. This catalyst does not employ substance like alumina exhibiting solid acidity as a catalyst carrier. Further, this catalyst can be used for purifying exhaust gases from diesel engines to suppress particulates and sulfates from being emitted, and to improve conversions of hydrocarbons and carbon monoxide.
摘要:
An electrically heating catalytic apparatus that quickly heats catalyst to an activation temperature even when the engine is started at a low temperature below the catalyst activation temperature. The apparatus employs an electrically conductive catalyst carrier that is electrically heated. The carrier is provided with local hot spots to be energized. Since the heat is locally generated, the heat capacity of the catalyst carrier is small to shorten a temperature increasing time.
摘要:
An object of the present invention is to provide a supported catalyst for a fuel cell having a high activity, a method of manufacturing thereof, and a fuel cell including the supported catalyst for a fuel cell. A supported catalyst for a fuel cell of the present invention includes a conductive carrier and catalyst particle supported on the conductive carrier and contains platinum. The ratio of the mass of oxygen to the mass of the catalyst particle measured by using an inert gas fusion-nondispersive infrared absorption method is 4 mass % or less.
摘要:
This invention provides a highly stable electrocatalyst having excellent electrochemical properties, which comprises a support containing a composite oxide containing Sb-doped SnO2 and a catalyst supported by the support, wherein the composite oxide is an amorphous composite oxide and the percentage of Sb with respect to the sum of Sb and Sn in the composite oxide is 2 to 10 at. %, or wherein the composite oxide is a crystalline composite oxide and the percentage of Sb with respect to the sum of Sb and Sn in the composite oxide is 1 to 3 at. %.
摘要:
The invention relates to methods of preparing metal particles on a support material, including platinum-containing nanoparticles on a carbon support. Such materials can be used as electrocatalysts, for example as improved electrocatalysts in polymer electrolyte membrane fuel cells (PEM-FCs).
摘要:
A core-shell composite material may include a core consisting of Nb-doped TiO2 of formula TiNbOx; and a shell consisting of a homogeneous layer of Pt or Pt alloy of 1 to 50 ML in thickness. The core-shell composite material may in particular find application in fuel cells.
摘要:
The present invention concerns a core-shell composite material comprising: a core consisting of Nb-doped TiO2 of formula TiNbOx; and a shell consisting of a homogeneous layer of Pt or Pt alloy of 1 to 50 ML in thickness. The core-shell composite material may in particular find application in fuel cells.
摘要:
An object of the present invention is to develop a support for PEMFC electrocatalyst with enhanced electrical conductivity and stability in acidic environment.The object can be achieved by a support material comprising a Ti—Nb composite oxide having rutile crystal structure,