Abstract:
A fuel cell system mounted in a vehicle includes a fuel cell stack, a coolant supply mechanism, and a fuel gas supply mechanism. The coolant supply mechanism includes a coolant supply pipe and a coolant discharge pipe, provided on a front side in a traveling direction of the vehicle, relative to the fuel cell stack. The fuel gas supply mechanism includes a fuel gas supply pipe, provided on a rear side in the traveling direction, relative to the fuel cell stack.
Abstract:
An electric turbo compressor is an air compressor to be used in a fuel cell system, and includes a housing comprised of a compression casing, a motor casing, and a canceller casing, and the housing houses therein an impeller, a rotary shaft, a thrust canceller (a load cancellation section), and a motor unit. The rotary shaft is supported by a thrust air bearing in its thrust direction, and is axially supported by a radial air bearing in its rotating direction. A thrust load is generated at the rotary shaft when the number of rotations of the impeller increases. The pressure of the compressed air acts to the pressure chamber from the compressed air lead-out section of the compression casing via the compressed air passage, and this pressure acts on the canceller flange of the canceller shaft so as to generate a load towards the rear of the rotary shaft. Therefore, the thrust load is cancelled out.
Abstract:
An electric turbo compressor is an air compressor to be used in a fuel cell system, and includes a housing comprised of a compression casing, a motor casing, and a canceller casing, and the housing houses therein an impeller, a rotary shaft, a thrust canceller (a load cancellation section), and a motor unit. The rotary shaft is supported by a thrust air bearing in its thrust direction, and is axially supported by a radial air bearing in its rotating direction. A thrust load is generated at the rotary shaft when the number of rotations of the impeller increases. The pressure of the compressed air acts to the pressure chamber from the compressed air lead-out section of the compression casing via the compressed air passage, and this pressure acts on the canceller flange of the canceller shaft so as to generate a load towards the rear of the rotary shaft. Therefore, the thrust load is cancelled out.
Abstract:
A motor-driven centrifugal compressor includes a journal air bearing having a bump foil and a top foil for restraining a bearing shaft in a resting state and forming an air layer between the top foil and the bearing shaft in a rotating state. The top foil and the bump foil are fixed to an inner circumferential surface of a ring member, which is fixed to an inner circumferential surface of a first stationary holding member of the ring member. The first stationary holding member has a coolant water channel defined therein. The bearing shaft, the air layer, the top foil, the bump foil, and the coolant water channel are arranged in the order named along a normal direction.
Abstract:
An over-sampling circuit is provided at a front stage of a digital matched filter, and a received signal is over-sampled with it. Synchronous acquisition of the received spread spectrum signal is implemented by adding the data obtained by the over-sampling, inputting it into the digital matched filter, and then performing a correlation thereon.
Abstract:
An electric turbo compressor is an air compressor to be used in a fuel cell system, and includes a housing comprised o a compression casing, a motor casing, and a canceller casing, and the housing houses therein an impeller, a rotary shaft, a thrust canceller (a load cancellation section), and a motor unit. The rotary shaft is supported by a thrust air bearing in its thrust direction, and is axially supported by a radial air bearing in its rotating direction. A thrust load is generated at the rotary shaft when the number of rotations of the impeller increases. The pressure of the compressed air acts to the pressure chamber from the compressed air lead-out section of the compression casing via the compressed air passage, and this pressure acts on the canceller flange of the canceller shaft so as to generate a load towards the rear of the rotary shaft. Therefore, the thrust load is cancelled out.
Abstract:
The present invention relates to a de-spreading method and a de-spreading apparatus, in which an correlation operation between input signals time-sequentially inputted and a predetermined code is performed so that data suitable for the code is extracted from the input signals. An object of the present invention is to reduce the circuit scale and the dissipation power. The de-spreading apparatus has a delay circuit for delaying the input signal relatively with respect to the synchronization detecting code to generate a delay signal, and an correlation circuit (the arithmetic operating unit 183, the adder 184, the registers 186E, 186P and 186L, etc.) for performing three correlation operations (Early), (Punctual) and (Late) between the input signal or the delay signal selected in accordance with the three correlation operations E, P and L, and the synchronization detecting code on a time division basis.
Abstract:
A RAKE receiver device includes a plurality of fingers for demodulating multipath receive data, and a data synthesis circuit for synthesizing the receive data from each of the paths and demodulated by the plural fingers. Each time the receive data is demodulated by one of the plural fingers, the data synthesis circuit adds cumulatively the demodulated receive data for each identical receive data from each of the paths, and synthesizes the data.
Abstract:
A fuel cell system mounted in a vehicle includes a fuel cell stack, a coolant supply mechanism, and a fuel gas supply mechanism. The coolant supply mechanism includes a coolant supply pipe and a coolant discharge pipe, provided on a front side in a traveling direction of the vehicle, relative to the fuel cell stack. The fuel gas supply mechanism includes a fuel gas supply pipe, provided on a rear side in the traveling direction, relative to the fuel cell stack.
Abstract:
A fuel cell vehicle includes: a vehicle body; a floor panel provided on the bottom of the vehicle body; a floor tunnel that is formed bulging upward in the center of the floor panel in the vehicle body width; a pair of front seats that are disposed on the floor panel, outside of the floor tunnel in the vehicle body width direction; center frames that support the floor tunnel, disposed at the center in the vehicle body width and extending along the vehicle body longitudinal direction; a sub-frame provided on the bottom of the floor panel and joined to the center frames; and a fuel cell stack mounted on the sub-frame and provided under the floor tunnel.