Abstract:
This invention is related to a radiation imager (e.g. x-ray imager) and method of making same. An insulating material having a low dielectric constant is provided in areas of overlap between collector electrodes and underlying TFTs, diodes, and/or address lines in order to improve the signal-to-noise ratio of the imager. The TFT array and corresponding imager are made in certain embodiments by coating the address lines and TFTs with a photo-imageable insulating layer which acts as a negative resist, exposing portions of the insulating layer with UV light, removing non-exposed areas of the insulating layer so as to form contact vias, and depositing storage capacitor collecting electrodes over the insulating layer so that the collecting electrodes contact TFT source electrodes through the contact vias. The resulting imager has an improved signal-to-noise ratio due to the low dielectric constant of the insulating layer.
Abstract:
This invention is related to a radiation imager (e.g. X-ray imager) including a thin film transistor (TFT) array, and method of making same. A photo-imageable insulating material having a low dielectric constant is provided in areas of overlap between electrodes and underlying TFTs, diodes, and/or address lines in order to improve the signal-to-noise ratio of the imager. The photo-imageable insulating layer acts as a negative resist in certain embodiments, so that vias are formed therein by exposing portions of the insulating layer with UV light which are to remain on the substrate, removing non-exposed areas of the insulating layer so as to form the vias or apertures in the insulating layer. In order to prevent non-uniformities from inadvertently being imaged into the photo-imageable insulating layer, an ultraviolet (UV) blocking/absorbing layer is provided. The UV blocking layer may be formed on the opposite side of the substrate from the TFTs, or alternatively may be formed as part of the gate insulating layer.
Abstract:
This invention is related to a radiation imager (e.g. X-ray imager) including a thin film transistor (TFT) array, and method of making same. A photo-imageable insulating material having a low dielectric constant is provided in areas of overlap between electrodes and underlying TFTs, diodes, and/or address lines in order to improve the signal-to-noise ratio of the imager. The photo-imageable insulating layer acts as a negative resist in certain embodiments, so that vias are formed therein by exposing portions of the insulating layer with UV light which are to remain on the substrate, removing non-exposed areas of the insulating layer so as to form the vias or apertures in the insulating layer. In order to prevent non-uniformities from inadvertently being imaged into the photo-imageable insulating layer, an ultraviolet (UV) blocking/absorbing layer is provided. The UV blocking layer may be formed on the opposite side of the substrate from the TFTs, or alternatively may be formed as part of the gate insulating layer.