Abstract:
A low-current input buffer is disclosed. The buffer uses self-biased N and P channel differential pairs with their outputs tied together. The self-biasing assists in reducing current consumption. The combination of N and P-channel differential pairs results in symmetry across a wide range of reference and supply voltages.
Abstract:
A CMOS integrated circuit output terminal driver subcircuit (60) provides quick response at an output terminal (56) of an integrated circuit (50) while preventing reverse current leakage when an external high voltage, which exceeds the positive internal circuit source voltage of the integrated circuit, is imposed on the output terminal (56). The output driver subcircuit (60) additionally provides an output voltage at the output terminal that is only nominally below the internal circuit source voltage. A p-channel MOS pull-up transistor (62) is operably connected to the output terminal (56) to selectively drive it substantially to the internal circuit source voltage. A leakage prevention device (66), comprising a native n-channel transistor (68) with a low turn-on threshold voltage, is connected in series with the pull-up transistor (62) to prevent output terminal reverse current leakage back through the pull-up transistor (62) when the external high voltage is imposed upon the output terminal (56).
Abstract:
A low-current input buffer is disclosed. The buffer uses self-biased N and P channel differential pairs with their outputs tied together. The self-biasing assists in reducing current consumption. The combination of N and P-channel differential pairs results in symmetry across a wide range of reference and supply voltages.
Abstract:
A low-current input buffer is disclosed. The buffer uses self-biased N and P channel differential pairs with their outputs tied together. The self-biasing assists in reducing current consumption. The combination of N and P-channel differential pairs results in symmetry across a wide range of reference and supply voltages.
Abstract:
A low-current input buffer is disclosed. The buffer uses self-biased N and P channel differential pairs with their outputs tied together. The self-biasing assists in reducing current consumption. The combination of N and P-channel differential pairs results in symmetry across a wide range of reference and supply voltages.
Abstract:
Disclosed herein are exemplary embodiments of an improved differential input buffer for receiving low power signals and associated methods. The disclosed buffer circuit comprises at least one differential amplifier for receiving as inputs an enable signal (e.g., a clock enable signal) and a reference signal, and provides a differential amplifier output representative of a comparison of the magnitude of the input signals. As improved, input buffer circuitry comprises a pull up stage to pull up the voltage of the differential amplifier output slightly higher during an output low condition. The pull up stage is preferably, but not necessarily, activated only during a problematic condition, such as when both input signals to the differential amplifier are low. By pulling up the output, the input buffer circuit enjoys improved margin, and is able to reliably signal a low power condition even when both inputs are low.
Abstract:
A low-current input buffer is disclosed. The buffer uses self-biased N and P channel differential pairs with their outputs tied together. The self-biasing assists in reducing current consumption. The combination of N and P-channel differential pairs results in symmetry across a wide range of reference and supply voltages.
Abstract:
A low-current input buffer is disclosed. The buffer uses self-biased N and P channel differential pairs with their outputs tied together. The self-biasing assists in reducing current consumption. The combination of N and P-channel differential pairs results in symmetry across a wide range of reference and supply voltages.
Abstract:
A low-current input buffer is disclosed. The buffer uses self-biased N and P channel differential pairs with their outputs tied together. The self-biasing assists in reducing current consumption. The combination of N and P-channel differential pairs results in symmetry across a wide range of reference and supply voltages.
Abstract:
A low-current input buffer is disclosed. The buffer uses self-biased N and P channel differential pairs with their outputs tied together. The self-biasing assists in reducing current consumption. The combination of N and P-channel differential pairs results in symmetry across a wide range of reference and supply voltages.