Abstract:
The present invention discloses a solid-state electric charge sensor (200, 600) comprising at least one signal-readout circuit (205, 605) that comprises a current source (140, 640) and a column line (120, 620). The sensor also comprises at least one charge detector circuit (210, 610) that is operatively coupled with the at least one signal-readout circuit (205, 605). The at least one signal-readout circuit (205, 605) is characterized by further comprising at least one open-loop amplifier (250, 650), the input of which is operatively connectable with the at least one column signal line (220, 620) and with the at least one current source (240, 640); at least one feedback line (230, 630) that is operatively connectable with the output (254, 654) of the at least one open-loop amplifier (250, 650); and operative to selectively form a negative feedback loop; and wherein the open-loop amplifier (250, 650) has an inverting voltage gain.
Abstract:
A demodulation device (1) in semiconductor technology is disclosed. The device (1) is capable of demodulating an injected modulated current. The device (1) comprises an input node (IN1), a sampling stage (DG1, IG1, GS1, IG2, DG2) and at least two output nodes (D1, D2). The sampling stage DG1, IG1, GS1, IG2, DG2) comprises transfer means (GL, GM, GR) for transferring a modulated charge-current signal from the input node (IN1) to one of the output nodes (D1, D2) allocated to the respective time interval within the modulation period. The small size and the ability to reproduce the device (1) in standard semiconductor technologies make possible a cost-efficient integration of the device (1).
Abstract:
A photo sensor exhibiting low noise, low smear, low dark current, high dynamic range and global shutter functionality consists either of a pinned (or buried) photodiode or a photo-sensitive charge-coupled device, each with associated transfer gate, a sub-linear element, a shutter transistor, a reset circuit and a read-out circuit. Using two output paths global shutter and high speed operation are possible for the linear and the sub-linear output of the sensor. Because of its compact size, the photo sensor can be employed in one- and two-dimensional image sensors, fabricated with industry-standard CMOS and CCD technologies.
Abstract:
A pixel is formed in a semiconductor substrate (S) with a plane surface for use in a photodetector. It comprises an active region for converting incident light (In) into charge carriers, photogates (PGL, PGM, PGR) for generating a lateral electric potential (Φ(x)) across the active region, and an integration gate (IG) for storing charge carriers generated in the active region and a dump site (Ddiff). The pixel further comprises separation-enhancing means (SL) for additionally enhancing charge separation in the active region and charge transport from the active region to the integration gate (IG). The separation-enhancing means (SL) are for instance a shield layer designed such that for a given lateral electric potential (Φ(x)), the incident light (In) does not impinge on the section from which the charge carriers would not be transported to the integration gate (IG).
Abstract:
A photo sensor exhibiting low noise, low smear, low dark current, high dynamic range and global shutter functionality consists either of a pinned (or buried) photodiode or a photo-sensitive charge-coupled device, each with associated transfer gate, a sub-linear element, a shutter transistor, a reset circuit and a read-out circuit. Using two output paths global shutter and high speed operation are possible for the linear and the sub-linear output of the sensor. Because of its compact size, the photo sensor can be employed in one- and two-dimensional image sensors, fabricated with industry-standard CMOS and CCD technologies.
Abstract:
A pixel is formed in a semiconductor substrate (S) with a plane surface for use in a photodetector. It comprises an active region for converting incident light (In) into charge carriers, photogates (PGL, PGM, PGR) for generating a lateral electric potential (Φ(x)) across the active region, and an integration gate (IG) for storing charge carriers generated in the active region and a dump site (Ddiff). The pixel further comprises separation-enhancing means (SL) for additionally enhancing charge separation in the active region and charge transport from the active region to the integration gate (IG). The separation-enhancing means (SL) are for instance a shield layer designed such that for a given lateral electric potential (Φ(x)), the incident light (In) does not impinge on the section from which the charge carriers would not be transported to the integration gate (IG).
Abstract:
The present invention discloses a solid-state electric charge sensor (200, 600) comprising at least one signal-readout circuit (205, 605) that comprises a current source (140, 640) and a column line (120, 620). The sensor also comprises at least one charge detector circuit (210, 610) that is operatively coupled with the at least one signal-readout circuit (205, 605). The at least one signal-readout circuit (205, 605) is characterized by further comprising at least one open-loop amplifier (250, 650), the input of which is operatively connectable with the at least one column signal line (220, 620) and with the at least one current source (240, 640); at least one feedback line (230, 630) that is operatively connectable with the output (254, 654) of the at least one open-loop amplifier (250, 650); and operative to selectively form a negative feedback loop; and wherein the open-loop amplifier (250, 650) has an inverting voltage gain.
Abstract:
A pixel is formed in a semiconductor substrate (S) with a plane surface for use in a photodetector. It comprises an active region for converting incident light (In) into charge carriers, photogates (PGL, PGM, PGR) for generating a lateral electric potential (Φ(x)) across the active region, and an integration gate (IG) for storing charge carriers generated in the active region and a dump site (Ddiff). The pixel further comprises separation-enhancing means (SL) for additionally enhancing charge separation in the active region and charge transport from the active region to the integration gate (IG). The separation-enhancing means (SL) are for instance a shield layer designed such that for a given lateral electric potential (Φ(x)), the incident light (In) does not impinge on the section from which the charge carriers would not be transported to the integration gate (IG).
Abstract:
A demodulation device (1) in semiconductor technology is disclosed. The device (1) is capable of demodulating an injected modulated current. The device (1) comprises an input node (IN1), a sampling stage (DG1, IG1, GS1 IG2, DG2) and at least two output nodes (D1, D2). The sampling stage DG1, IG1, GS1, IG2, DG2) comprises transfer means (GL, GM, GR) for transferring a modulated charge-current signal from the input node (IN1) to one of the output nodes (D1, D2) allocated to the respective time interval within the modulation period. The small size and the ability to reproduce the device (1) in standard semiconductor technologies make possible a cost-efficient integration of the device (1).