Abstract:
A current perpendicular-to-the-plane magnetoresistance (CPP-MR) read head includes a top shield and a bottom shield formed of magnetically shielding, electrically-conductive material. A multilayer magnetoresistance (MR) structure is disposed between the top shield and the bottom shield. The MR structure is in electrical contact with the top and bottom shields. A transverse magnetic field generating structure is adjacent the MR structure to transversely, magnetically bias the MR structure. The transverse magnetic field generating structure includes two permanent magnets on either side of the MR structure, and a T-shaped soft magnetic layer to direct magnetic flux from the magnets to the MR structure. In this manner, the read head provides a strong and uniform transverse magnetic bias to the MR structure.
Abstract:
A current perpendicular-to-the-plane magnetoresistance (CPP-MR) read head includes a top shield, a bottom shield, and a giant magnetoresistance structure. Top and bottom shields are formed of magnetically shielding, electrically conductive material. The GMR structure is disposed between the top shield and the bottom shield with the GMR structure being in electrical contact with the top and bottom shield such that a sense current flows from one of the top and bottom shields through the GMR structure to the other one of the top and bottom shields. A metal pillar is electrically connected to one of the top and bottom shields. The metal pillar carries the sense current and is disposed such that the current flows in a direction generally perpendicular-to-the-plane of the GMR structure. Depending on the particular application, the read head can be configured so that current flowing in the metal pillar provides either a longitudinal or a transverse bias to the giant magnetoresistance structure.
Abstract:
A current perpendicular-to-the-plane magnetoresistance (CPP-MR) device includes a first magnetic shield, a second magnetic shield, and a spin valve structure. The first and second magnetic shields are formed of an electrically conductive and magnetically shielding material. A read gap is defined between the first and second magnetic shields, and the spin valve structure is disposed between the first and second magnetic shields. The spin valve structure is electrically connected and magnetically separated from the first and second magnetic shields such that the first and second magnetic shields act as electrical contact leads.
Abstract:
A magnetoresistive (MR) head including, for example, a spin valve (SV) MR element having a sense current passing through the SV in a current-perpendicular-to-the-plane (CPP) mode. A free layer of the SV is transversely biased by a magnetostatic coupling field from an in-stack transverse bias layer. The transverse bias layer is separated from the free layer by a nonmagnetic high resistive spacer layer, which can cause strong spin memory loss and also provide a longitudinal biasing to the free layer of the SV. An out of stack longitudinal bias arrangement may alternatively be provided to impart a longitudinal bias to the free layer. The SV MR element comprises a MR promoting (MRP) layer either within in or adjacent to the free layer 90 or the pinned layer 110 This MR head structure provides enhanced linearity of the response to the magnetic field being sensed.