摘要:
A polymer electrolyte membrane having good resistance to radicals is provided. A polymer electrolyte membrane is characterized of containing organic/inorganic hybrid particles in which a surface of an inorganic particle, which is a radical scavenger, is modified with organic compounds in a polymer electrolyte. As the organic/inorganic hybrid particles in which a surface of an inorganic particle is modified with organic compounds, a radical scavenger prepared by reacting inorganic particles with organic compounds in a solvent by supercritical or subcritical hydrothermal synthesis is preferred.
摘要:
A polymer electrolyte membrane having good resistance to radicals is provided. A polymer electrolyte membrane is characterized of containing organic/inorganic hybrid particles in which a surface of an inorganic particle, which is a radical scavenger, is modified with organic compounds in a polymer electrolyte. As the organic/inorganic hybrid particles in which a surface of an inorganic particle is modified with organic compounds, a radical scavenger prepared by reacting inorganic particles with organic compounds in a solvent by supercritical or subcritical hydrothermal synthesis is preferred.
摘要:
In a fuel cell 1 including a membrane electrode assembly 2 which includes a reinforcing-membrane-type electrolyte membrane 10A, a dry-up on the anode side is suppressed by actively forming a water content gradient in the electrolyte membrane to enhance water back-diffusion effect from the cathode side to the anode side. For that purpose, two sheets of expanded porous membranes 12a and 12b having different porosities are buried, as reinforcing membranes, in electrolyte resin 11 to obtain the reinforcing-membrane-type electrolyte membrane 10A. The reinforcing-membrane-type electrolyte membrane 10A is used to form the membrane electrode assembly 2, which is sandwiched by separators 20 and 30 such that the side of a reinforcing membrane 12b with a larger porosity becomes the cathode side, thus obtaining the fuel cell 1. When one sheet of the reinforcing membrane is buried, the reinforcing membrane is offset to the anode side to be buried in the electrolyte resin.
摘要:
The driver circuit includes a first controlling circuit that outputs, to a gate of the auxiliary pMOS transistor, a first controlling signal that rises in synchronization with a rising of the first pulse signal and falls after a delay from a falling of the first pulse signal. The driver circuit includes a second controlling circuit that outputs, to a gate of the auxiliary nMOS transistor, a second controlling signal that rises in synchronization with a rising of the second pulse signal and falls after a delay from a falling of the second pulse signal.
摘要:
In a fuel cell 1 including a membrane electrode assembly 2 which includes a reinforcing-membrane-type electrolyte membrane 10A, a dry-up on the anode side is suppressed by actively forming a water content gradient in the electrolyte membrane to enhance water back-diffusion effect from the cathode side to the anode side. For that purpose, two sheets of expanded porous membranes 12a and 12b having different porosities are buried, as reinforcing membranes, in electrolyte resin 11 to obtain the reinforcing-membrane-type electrolyte membrane 10A. The reinforcing-membrane-type electrolyte membrane 10A is used to form the membrane electrode assembly 2, which is sandwiched by separators 20 and 30 such that the side of a reinforcing membrane 12b with a larger porosity becomes the cathode side, thus obtaining the fuel cell 1. When one sheet of the reinforcing membrane is buried, the reinforcing membrane is offset to the anode side to be buried in the electrolyte resin.
摘要:
The driver circuit includes a first controlling circuit that outputs, to a gate of the auxiliary pMOS transistor, a first controlling signal that rises in synchronization with a rising of the first pulse signal and falls after a delay from a falling of the first pulse signal. The driver circuit includes a second controlling circuit that outputs, to a gate of the auxiliary nMOS transistor, a second controlling signal that rises in synchronization with a rising of the second pulse signal and falls after a delay from a falling of the second pulse signal.
摘要:
A reinforced electrolyte membrane for a fuel cell wherein the electrolyte membrane is reinforced with a porous membrane and a radical scavenger is immobilized in the porous membrane. The reinforced electrolyte membrane for a fuel cell is a solid polymer electrolyte membrane suppressing the radical scavenger from leaking outside of the system and having good chemical durability.