Abstract:
Disclosed is a non-aqueous electrolyte including a non-aqueous solvent, and a solute dissolved in the non-aqueous solvent. The non-aqueous solvent contains ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), and an additive. The weight percentage WEC of EC the total weight of EC, PC, and DEC is more than 20 wt % and equal to or less than 35 wt %; the weight percentage WPC of PC is 20 to 40 wt %; and the weight percentage WDEC of DEC is 30 to 50 wt %. The additive contains a cyclic carbonate having a C═C unsaturated bond, and a sultone compound. The ratio WC/WSL of a weight percentage WC of the cyclic carbonate having a C═C unsaturated bond contained in the non-aqueous electrolyte, to a weight percentage WSL of the sultone compound contained in the non-aqueous electrolyte is 1 to 6.
Abstract:
A negative electrode for a lithium ion secondary battery includes a negative electrode core member and a negative electrode mixture layer adhering to the negative electrode core member. The negative electrode mixture layer includes active material particles, a cellulose ether compound, and rubber particles. The cellulose ether compound has a degree of etherification of 0.25 or more and 0.7 or less and an average degree of polymerization of 20 or more and 1200 or less. The negative electrode mixture layer contains remaining particles including a water-insoluble portion of the cellulose ether compound and having a mean particle size of 1 μm or more and 75 μm or less. The bonding strength between the active material particles is 98 N/cm2 or more.
Abstract translation:锂离子二次电池用负极包括负极芯部件和附着在负极芯部件上的负极合剂层。 负极混合层包括活性物质颗粒,纤维素醚化合物和橡胶颗粒。 纤维素醚化合物的醚化度为0.25以上且0.7以下,平均聚合度为20以上且1200以下。 负极混合物层含有包含纤维素醚化合物的水不溶性部分,平均粒径为1μm以上且75μm以下的残留粒子。 活性物质粒子的结合强度为98N / cm 2以上。
Abstract:
A lithium secondary battery including: an electrode group, a non-aqueous electrolyte and a battery case housing the electrode group and the non-aqueous electrolyte, the electrode group including a positive electrode, a negative electrode and a separator layer interposed between the positive electrode and the negative electrode, wherein an end-of-charge voltage and an end-of-discharge voltage are set in such a manner that the electrode group has an energy density of not less than 700 Wh/L, the separator layer includes a porous heat-resistant layer, and a short circuit area A produced when an internal short circuit has occurred between the positive electrode and the negative electrode, and a reduced area B of the porous heat-resistant layer that is produced by heat generation satisfy 1≦(A+B)/A≦10.
Abstract:
The invention provides a method for evaluating the safety of a battery under an internal short-circuit condition. The battery includes: an electrode group including a positive electrode, a negative electrode, and an insulating layer for electrically insulating the electrodes, which are wound or laminated; an electrolyte; a housing for housing the electrode group and the electrolyte; and a current-collecting terminal for electrically connecting the electrode group and the housing. The method of the invention includes: placing a foreign object at a location inside the electrode group of the battery where the positive electrode and the negative electrode face each other; and pressing the location by the pressure applied by a pressing tool to locally crush the insulating layer between the positive and negative electrodes, thereby causing an internal short-circuit. The contact area of the electrode group and the pressing tool during the pressing is larger than the area of a rectangle circumscribed about the foreign object. A short-circuit test is conducted at a given location inside the battery to comprehensively evaluate the safety of the battery under an internal short-circuit condition.
Abstract:
The non-aqueous electrolyte secondary battery of the present invention is provided with an electrode plate group and a non-aqueous electrolyte, the electrode plate group including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, a positive electrode lead connected to the positive electrode, and a negative electrode lead connected to the negative electrode. The energy density of the electrode plate group is 750 Wh/L or higher by volume, and the cross-sectional area of at least one of the positive electrode lead and the negative electrode lead is 5.5×10−5 to 1.2×10−2 cm2.
Abstract:
A non-aqueous electrolyte secondary battery including: a positive electrode having a positive electrode material mixture containing a composite lithium oxide; a negative electrode; a polyolefin separator; a non-aqueous electrolyte; and a heat-resistant insulating layer interposed between the positive and negative electrodes. The positive electrode active material mixture has an estimated heat generation rate at 200° C. of not greater than 50 W/kg. The estimated heat generation rate is determined by obtaining a relation between absolute temperature T and heat generation rate V of the positive electrode material mixture using an accelerating rate calorimeter; plotting a relation between the inverse of absolute temperature T and the logarithm of heat generation rate V according to the Arrhenius law; obtaining a straight line fitted to the plotted points in a heat generation temperature range of T
Abstract:
An object of the present invention is to provide an electrode for a lithium ion secondary battery that can ensure a high level of safety even when exposed to severe conditions such as a nail penetration test or crush test, and exhibit excellent output characteristics.The present invention relates to an electrode for a lithium ion secondary battery having a material mixture containing active material particles capable of reversibly absorbing and desorbing lithium, and a current collector that carries the material mixture, wherein a surface of the current collector has recessed portions, and an area occupied by the recessed portions accounts for not less than 30% of an a material mixture carrying area of the current collector. The present invention further relates to an electrode for a lithium ion secondary battery wherein, in a cut surface obtained by simultaneously cutting a material mixture and a current collector vertically to an electrode plane, the maximum depth of recessed portions is not less than 1 μm, or a difference between an average thickness of a current collector and a maximum thickness of the current collector is not less than 0.35 μm.
Abstract:
In a lithium ion secondary battery including a flat-plate electrode assembly which is configured by stacking the positive electrode, the separator, and the negative electrode in the thickness direction thereof, each of the positive electrode and the negative electrode includes a current collector and an active material layer. Each of the current collector includes a substantially rectangular current collector body, a heat radiating portion, and a lead portion, and the heat radiating portions are projected toward the outside of the electrode assembly so as not to overlap with each other in the thickness direction of the electrode assembly. In this way, heat caused inside the lithium ion secondary battery can be diffused efficiently to the outside, and safety of the lithium ion secondary battery can be further increased, without complicating the battery structure and decreasing mechanical strength of the battery.
Abstract:
An evaluation method for evaluating safety of a battery having an electrode group including a positive electrode plate, a negative electrode plate and a separator inserted between said electrode plates. The method includes the steps of charging the battery to a predetermined voltage; incorporating conductive foreign matter into the charged battery such that the conductive foreign matter is in contact with the positive electrode plate, and not in contact with the negative electrode plate; immersing said battery into which the conductive foreign matter has been incorporated in an electrolyte to dissolve and deposit the conductive foreign matter, thereby causing an internal short circuit to occur in the battery; and evaluating a thermal behavior of the battery in which the internal short circuit has occurred, and outputting results of the evaluation as safety indices.
Abstract:
A cell evaluation device has a short circuit detection portion to detect an internal short circuit within a test cell that has been subjected to nail penetration or crushing using the pressure from a pressurization portion, a pressure control portion to halt the operation of the pressurization portion on detection of a short circuit, and a cell information detection portion to collect and record cell information such as the cell temperature. By using such a cell evaluation device, the location of an internal short circuit during an abuse test is specified, and variations in the cell temperature increase accompanying the internal short circuit is minimized.