Abstract:
A method of enhancing the ductility of magnesium alloy sheets containing 85% or more by weight of magnesium is described. An annealed, substantially strain free, sheet of generally uniform grain size is locally deformed in local regions to develop strained ‘islands’ of a predetermined strain embedded in a substantially strain-free matrix and then annealed. The deformed regions undergo recrystallization and grain growth while the remainder of the sheet suffers only minor change in grain size, leading to sheet with grains having a bimodal size distribution. The ductility of alloys processed in this way is significantly greater than the ductility of the unprocessed, uniform grain size alloy without compromise to the tensile strength of the alloy.
Abstract:
Methods for determining a recovery state of a metal alloy are disclosed herein. In one example, a fluctuation in a crystallographic grain orientation of the metal alloy is determined by utilizing electron backscatter diffraction (EBSD) data of the metal alloy. A processor of an electron backscatter diffraction machine utilizes a local orientation deviation quantifier to correlate the fluctuation in the crystallographic grain orientation of the metal alloy with a plastic strain recovery of the metal alloy. Other examples of the method are also disclosed herein.
Abstract:
A method of improving the corrosion resistance of magnesium alloy castings containing more than about 2 per cent by weight of aluminum is described. The method comprises: first selecting a casting process suitable for developing at least on the surface of the casting a microstructure comprising aluminum-depleted magnesium grains surrounded by an aluminum-rich layer and preferably incorporating at least some of an intermetallic compound based on the composition Mg17Al12; and second, heat treating at least the outer layer of the casting to promote additional intermetallic compound precipitation as required.
Abstract:
Methods for determining a recovery state of a metal alloy are disclosed herein. In one example, a fluctuation in a crystallographic grain orientation of the metal alloy is determined by utilizing electron backscatter diffraction (EBSD) data of the metal alloy. A processor of an electron backscatter diffraction machine utilizes a local orientation deviation quantifier to correlate the fluctuation in the crystallographic grain orientation of the metal alloy with a plastic strain recovery of the metal alloy. Other examples of the method are also disclosed herein.
Abstract:
A method of enhancing the ductility of magnesium alloy sheets containing 85% or more by weight of magnesium is described. An annealed, substantially strain free, sheet of generally uniform grain size is locally deformed in local regions to develop strained ‘islands’ of a predetermined strain embedded in a substantially strain-free matrix and then annealed. The deformed regions undergo recrystallization and grain growth while the remainder of the sheet suffers only minor change in grain size, leading to sheet with grains having a bimodal size distribution. The ductility of alloys processed in this way is significantly greater than the ductility of the unprocessed, uniform grain size alloy without compromise to the tensile strength of the alloy.
Abstract:
The present invention provides a method, a system, and a computer program product for determining an effort associated with the maintenance of software. The method, the system, and the computer program product enable receiving values corresponding to predefined factors, which are segregated into corrective factors, preventive factors, perfective factors, and adaptive factors. A corrective effort is determined based on the corrective factors and predefined rules. Thereafter, a preventive effort is determined based on the preventive factors, the predefined rules, and the corrective effort. Thereafter, a perfective effort is determined based on the perfective factors, the predefined rules, and the corrective effort. Subsequently, an adaptive effort is determined based on the adaptive factors, the predefined rules, the corrective effort, the preventive effort, and the perfective effort. A total effort is then generated based on the corrective effort, the preventive effort, the perfective effort, and the adaptive effort.