Abstract:
An embodiment of the present invention provides an electrode for a rechargeable lithium battery, including: a current collector; and an active material layer on the current collector, wherein the active material layer includes an active material adapted to reversibly intercalate and deintercalate lithium ions, a binder, and a pore-forming polymer.
Abstract:
A negative electrode for rechargeable lithium batteries includes a current collector, a porous active material layer having a metal-based active material disposed on the current collector, and a high-strength binder layer on the porous active material layer. The high-strength binder layer has a strength ranging from 5 to 70 MPa. The negative active material for a rechargeable lithium battery according to the present invention can improve cycle-life characteristics by suppressing volume expansion and reactions of an electrolyte at the electrode surface.
Abstract:
Provided is a solar cell. The solar cell includes: a substrate including through lines opposing to each other; a semiconductor layer on a top side of the substrate; bus lines at both edges of a top side of the semiconductor layer; and bus bars connected electrically to the bus lines, respectively, and extending to a rear side of the substrate through the through lines.
Abstract:
The present invention relates to a discharging noise system of a hermetic compressor. The present invention includes a first discharging noise suppressor (39) provided at one side end of a cylinder block 35 to firstly reduce noise and pulsation of work fluid compressed in and discharged from a compressing chamber (37) formed to be bored through the cylinder block (35) in a fore and aft direction, a second discharging noise suppressor (39′) provided at the other side end of the cylinder block (35) and communicating with the first discharging noise suppressor 39 to secondarily reduce noise and pulsation of the work fluid with noise and pulsation reduced by the first discharging noise suppressor (39), a connection pipe (43) for allowing the first and second discharging noise suppressors (39) and (39′) to communicate with each other to form a channel for allowing the work fluid to move, the connection pipe (43) having a length longer than a shortest straight distance between the discharging noise suppressors (39 and 39′), and a discharging pipe (45) provided at the second discharging noise suppressor (39′) to form a channel through which the work fluid is discharged to the outside. According to the present invention configured as above, the connection pipe is relatively long to reduce pulsation, thereby improving operating characteristics of the hermetic compressor, so that vibration generated by the pulsation is reduced to improve durability of the hermetic compressor.
Abstract:
A negative electrode for a rechargeable lithium battery and a rechargeable lithium battery including the same, the negative electrode including a current collector; and an active material layer formed on the current collector. The active material layer includes a solid solution of a metallic component, and an active material that is capable of forming a lithium-included compound, the metallic component selected from Cu, Ti, a Cu—X alloy, a Ti—X alloy, and a combination thereof. In the alloys, X is selected from an alkaline metal, an alkaline-earth metal, a Group 13 element excluding Ti, a Group 14 element, a transition element excluding Cu, a rare earth element, and a combination thereof.
Abstract:
There are provided a promoter containing ginsenoside compound K for the production of hyaluronic acid, and more particularly, a new efficacy of 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol (compound K), a chief metabolite of ginseng saponin, to increase the expression of hyaluronic acid synthase gene in human cell and thereby to promote the production of hyaluronic acid, and an anti-aging agent containing the promoter for the production of hyaluronic acid as an effective ingredient.
Abstract:
Negative active materials and rechargeable lithium batteries including the negative active materials are provided. The negative active material includes an intermetallic compound of Si and a metal, and a metal matrix including Cu and Al. The negative active material may provide a rechargeable lithium battery having high capacity and excellent cycle-life and cell efficiency.
Abstract:
A negative active material for a rechargeable lithium battery includes Si active particles, and a 3-component to 7-component metal matrix that surrounds the active fine particles without reacting therewith. The negative active material shows high capacity and improved cycle-life characteristics.
Abstract:
A negative electrode for a lithium rechargeable battery is provided. The negative electrode includes a current collector, a thermosetting resin layer disposed on the current collector, and a negative active material layer disposed on the thermosetting resin layer. Metal ions in the current collector are diffused into the thermosetting resin layer, creating a concentration gradient of metal ions in the thermosetting resin layer. The metal ions diffused into the thermosetting resin layer react with the thermosetting resin to form metal compounds.
Abstract:
An active material for a rechargeable lithium battery is provided with a non-carbon-based material on which nanofiber-shaped carbon having an oxygen-included functional group is grown. The negative active material for a rechargeable lithium battery has good conductivity and cycle life characteristics.