Abstract:
A transconductance amplifier generally limits its current output, and specifically decreases its current output as a function of temperature. The circuit is made up of an operational amplifier and two drive transistors that are connected to a first part of the amplifier circuit and a second part of the amplifier circuit respectively. The first part of the circuit is driven by positive input voltages, and the second part of the circuit is driven by negative input voltages. A transistor in each part of the circuit clamps a voltage, thereby limiting the current output. The negative temperature coefficient of the transistor also decreases the output current as the temperature of the circuit rises.
Abstract:
A redundant power supply with a number of loads is coupled to each half of the redundant supply by a respectively different MOSFET switch, with logic gates coupling control signals to the MOSFET switches. The control signal is coupled as one input to the logic gate and the output of the logic gate is connected to the MOSFET switch. The other input of the logic gates for a particular power supply is the output of an overvoltage detection circuit whose output is coupled as an input to all the gates for that power supply. The output of the gates opens the MOSFET switches in response to detection of an overvoltage condition.
Abstract:
An apparatus for controlling voltage sequencing for a power supply having multiple switching regulators includes a first switching regulator, a second switching regulator, a first and second resistors, and a first and second transistors. The first switching regulator provides a positive output voltage at a positive voltage output. The second switching regulator provides a negative output voltage at a negative voltage output. When the voltage at a node between the first and second resistors exceeds a predetermined positive voltage, the first transistor turns on to limit the positive output voltage at the positive voltage output. When the voltage at the node between the first and second resistors drops below a predetermined negative voltage, the second transistor turns on to limit the negative output voltage at the negative voltage output.
Abstract:
A switching regulator connectable to a DC power supply includes a power switch coupled between a first node and an output node and having a control gate. An output voltage feedback circuit is coupled between the output node and a feedback node. A self-oscillating power switch control circuit is coupled to the first node, the feedback node, and the power switch control gate. The power switch control circuit compares a feedback voltage to a reference voltage and provides a first control voltage to the power switch control gate when the reference voltage exceeds the feedback voltage to turn on the power switch to raise the output voltage, and a second control voltage to the power switch control gate when the feedback voltage exceeds the reference voltage to turn off the power switch to lower the output voltage.
Abstract:
A power bus digital communication system reduces power and signal cabling in a space satellite by transformer coupling digital signal sources to power bus circuits, the transformer coupling devices in all power bus circuits being in parallel relation and electrically isolated from a power supply whereby the digital communication sources may communicate among themselves at a DC power level using a square wave modulated according to a Manchester code.
Abstract:
A buck switching regulated power supply having a first feedback loop which is relatively slow, so as to prevent rapid changes in the output current from being reflected to the input current. A second, faster feedback loop having a higher loop gain is provided, and is arranged to take over when the load voltage reaches a predetermined level, so as to prevent the load voltage from rising above such level.
Abstract:
An electromagnetic protection ASIC that includes a high transconductance FET switch array operatively arranged to momentarily short all lines of ingress/egress to ground when triggered by a nuclear event detector.
Abstract:
An apparatus for reducing switching regulator noise from outputs of multiple switching regulators is disclosed. The apparatus includes an operational amplifier, an capacitor, a resistor and a pair of diodes. The switching regulators are connected in series to provide a positive output rail and a negative output rail. The output of the operational amplifier in connected to an inverting input of the operational amplifier and a positive sensing input of one of the switching regulators. The non-inverting input of the operation amplifier is connected to the positive output rail of one of the switching regulator via the capacitor. The resistor is connected between a positive voltage output of one of the switching regulators and the capacitors. The pair of diodes is connected between the positive voltage output of one of the switching regulators and the negative output rail of the switching regulators.
Abstract:
A bridge amplifier includes a first input node connectable to a power source having an input voltage, a second input node connectable to a control source having a control voltage, and a first and a second output node. A first amplifier module having a gain is coupled between the first and second input nodes and between the first and second output nodes, and a second amplifier module is coupled to the first input node and between the first and second output nodes. The first amplifier module compares a voltage differential between the first and second output nodes to the control voltage and provides an output voltage at the first output node necessary to maintain the voltage differential at a level substantially equal to a product of the control voltage multiplied by the gain. The second amplifier module compares a midpoint voltage level of the input voltage to a midpoint voltage level of the voltage differential and provides and output voltage at the second output node necessary to maintain the voltage differential midpoint level at a level substantially equal to the input voltage midpoint level.
Abstract:
A MOSFET switched, redundant power supply has a back-to-back MOSFET switch connecting respectively each power supply to a single load. Each power supply has a positive and negative gate voltage source. In a specific N-channel MOSFET embodiment, the positive (i.e. on) bias is coupled to each switch via a radiation hardened, redundant analogue switch capable of being driven by, for example, a TTL or CMOS microprocessor signal. The negative (i.e. off) bias is coupled to each via a redundant diode pair. In addition, the gates of the back-to-back MOSFET switch for one power source are also connected to the negative bias of the other power source. In this way the MOSFET switch for a failed power supply will be maintained in an off state by the negative bias provided by the redundant supply.