Abstract:
The present disclosure provides methods and systems for automatic carving of Optical channel Data Unit k (ODUk) levels on connection creation as well as the enforcement of an OTN hierarchy policy. In an exemplary embodiment, the present invention provides several methods of automatically carving Optical channel Data Tributary Unit Group (ODTUG) structures down to a desired ODUk layer during end-to-end circuit setup. These methods may include a recursively descending algorithm, an iterative array algorithm, and an ordered linked list algorithm. Additionally, to interoperate with network elements which may have a fixed ODTUG structure within an Optical channel Transport Unit (OTU), a method of policy enforcement describing each ODUk layer mapped into ODTUG structures is used to select a best match of the currently provisioned ODUk layers.
Abstract:
A method, a network, and a node each implement the transmission of Automatic Protection Switching (APS) switching coordination bytes across an OTN network. A working signal and a protection signal are received, one of which is designated as an active signal. The active signal is encapsulated in an Optical channel Data Unit (ODU) signal. APS switching coordination bytes from the working and protection signals are placed in an overhead segment of the ODU signal. The ODU signal is transmitted into and received from an Optical Transport Network (OTN) network. The working and protection signals are recreated based on the active signal encapsulated in the ODU signal and the APS switching coordination bytes in the overhead segment. The recreated working and protection signals are transmitted. In this manner, a single ODU signal may be used to transmit both the working and protection signals.
Abstract:
The present disclosure provides methods and systems for automatic carving of Optical channel Data Unit k (ODUk) levels on connection creation as well as the enforcement of an OTN hierarchy policy. In an exemplary embodiment, the present invention provides several methods of automatically carving Optical channel Data Tributary Unit Group (ODTUG) structures down to a desired ODUk layer during end-to-end circuit setup. These methods may include a recursively descending algorithm, an iterative array algorithm, and an ordered linked list algorithm. Additionally, to interoperate with network elements which may have a fixed ODTUG structure within an Optical channel Transport Unit (OTU), a method of policy enforcement describing each ODUk layer mapped into ODTUG structures is used to select a best match of the currently provisioned ODUk layers.
Abstract:
The present invention provides methods and systems for managing matrices of connections within digital switching fabrics. The methods and systems include means for defining one or more of sources and sinks in a matrix of connections as one or more of unidirectional connection termination points and novel unidirectional virtual connection points, where each of the unidirectional virtual connection points is a logical object that is maintained in software that defines connections between one or more of network resources and logical objects. The virtual connection points selectively act as origination points for one or more of other virtual connection points and termination points in a cross-connect; termination points for one or more of other virtual connection points and origination points in a cross-connect; origination points for a multicast set of connections; intermediate points within a cross-connect for the addition of new connections; selectors for two or more inputs; simultaneously as selectors for two or more inputs and as origination points for a multicast set of connections; one or more of bridges, selectors, and bridge/selectors in a protection application; one or more of origination points and termination points in a signaled network connection; local test access points; and/or remote test access points.
Abstract:
Systems and methods for the implementation of a remote test access feature using virtual connection points and sub-network connections by the merge-and-split of flexible permanent virtual circuits. A sub-network connection is created between a remote test set and a connection termination point of a circuit of interest through the provision of two endpoints of interest. Subsequently, monitoring and management capabilities are established and operation, administration, and maintenance functions are performed at a centralized location using a network management system. The remote tap used may employ any protection scheme and mesh restore, as necessary, either manually or automatically, in the event of signal degrade or failure scenarios. The endpoint of the remote tap may be selectively changed, and the remote tap re-groomed for a different circuit of interest via a simple point-and-click.
Abstract:
A method, a network, and a node each implement the transmission of Automatic Protection Switching (APS) switching coordination bytes across an OTN network. A working signal and a protection signal are received, one of which is designated as an active signal. The active signal is encapsulated in an Optical channel Data Unit (ODU) signal. APS switching coordination bytes from the working and protection signals are placed in an overhead segment of the ODU signal. The ODU signal is transmitted into and received from an Optical Transport Network (OTN) network. The working and protection signals are recreated based on the active signal encapsulated in the ODU signal and the APS switching coordination bytes in the overhead segment. The recreated working and protection signals are transmitted. In this manner, a single ODU signal may be used to transmit both the working and protection signals.
Abstract:
A switch fabric system and network element based thereon include a N×M switch fabric with M Trail Termination Points (TTPs) each with N timeslots there through in a bidirectional manner, a first connection in the switch fabric, wherein the first connection includes a unidirectional asymmetric connection of X timeslots, wherein X
Abstract:
A switch fabric system and network element based thereon include a N×M switch fabric with M Trail Termination Points (TTPs) each with N timeslots there through in a bidirectional manner, a first connection in the switch fabric, wherein the first connection includes a unidirectional asymmetric connection of X timeslots, wherein X
Abstract:
The present invention provides systems and methods for the implementation of a remote test access feature using virtual connection points and sub-network connections by the merge-and-split of flexible permanent virtual circuits. The remote test access feature of the present invention represents a highly flexible and fully automated technique that utilizes and exploits a network cloud. A sub-network connection is created between a remote test set and a connection termination point of a circuit of interest through the provision of two endpoints of interest. Subsequently, monitoring and management capabilities are established and operation, administration, and maintenance functions are performed at a centralized location using a network management system. The remote tap used may employ any protection scheme and mesh restore, as necessary, either manually or automatically, in the event of signal degrade or failure scenarios. The endpoint of the remote tap may be selectively changed, and the remote tap re-groomed for a different circuit of interest via a simple point-and-click. Thus, problems anywhere in the transport network may be tracked down.
Abstract:
The present invention provides methods and systems for managing matrices of connections within digital switching fabrics. The methods and systems include means for defining one or more of sources and sinks in a matrix of connections as one or more of unidirectional connection termination points and novel unidirectional virtual connection points, where each of the unidirectional virtual connection points is a logical object that is maintained in software that defines connections between one or more of network resources and logical objects. The virtual connection points selectively act as origination points for one or more of other virtual connection points and termination points in a cross-connect; termination points for one or more of other virtual connection points and origination points in a cross-connect; origination points for a multicast set of connections; intermediate points within a cross-connect for the addition of new connections; selectors for two or more inputs; simultaneously as selectors for two or more inputs and as origination points for a multicast set of connections; one or more of bridges, selectors, and bridge/selectors in a protection application; one or more of origination points and termination points in a signaled network connection; local test access points; and/or remote test access points.