Abstract:
Numerous enhancements to metro Ethernet network (MEN) services include an enhancement of the overall MEN Quality of Service (QoS) architecture, an enhancement to classification at the provider edge, the use of Ethernet QoS classes, enhancements to policing and marking at ingress provider edge equipment, the provision of traffic management functions at egress provider edge equipment, the use of multiple Ethernet virtual connections (EVCs) and Aggregate EVCs, an enhancement to QoS across an external network-network interface and an enhancement to treatment of Ethernet service frames in a core network.
Abstract:
Traffic engineering and bandwidth management of bundled links may, at times, require the selection of one of a plurality of component links in a bundled link to use in admitting a connection requiring admission. While performing the selection it may be determined that more than one of the component links has the resources required to admit the connection. An admission policy may then be selected from among a plurality of admission policies. Based on the selected admission policy, a particular component link may then be selected. Such bandwidth management, based on admission policies, may be seen to be well suited to balancing and component link recovery in traffic engineered, connection-oriented MPLS networks.
Abstract:
An network includes an edge node configured to define per hop behaviors using a set of bits in an Ethernet header of a frame and a core node configured to receive the frame and to forward the frame according to the per-hop-behaviors. The network can also include a defined set of differentiated service classes, each differentiated service class associated with the set of per hop behaviors, indicated in the set of priority bits. The network classifies the Ethernet frame based on at least one of a set of priority bits or information in at least one protocol layer in the frame header of the Ethernet frame and determines a per hop behavior based on the classification.
Abstract:
Numerous enhancements to metro Ethernet network (MEN) ELAN services and IETF Virtual Private LAN Service (VPLS) include an enhancement of the overall Quality of Service (QoS) architecture, an enhancement to classification at the provider edge, the use of Ethernet QoS classes, enhancements to policing and marking at ingress provider edge equipment, the provision of traffic management functions at egress provider edge equipment, the use of multiple Ethernet virtual connections (EVCs) and Aggregate EVCs, an enhancement to QoS across an external network-network interface and an enhancement to treatment of Ethernet service frames in a core network.
Abstract:
An edge node of a communication network and method to classify incoming Ethernet traffic based on predetermined criteria. An ingress switch is configured to receive an incoming Ethernet frame. A frame classifier is configured to identify flows and to correlate a flow to a corresponding bandwidth profile and corresponding forwarding treatments defined for the flow.
Abstract:
The two types of virtual local area networks (VLANs) may be defined: p-bits-Inferred-scheduling class VLAN (p-VLAN); and VLAN-ID-Only-Inferred-scheduling class VLANs (v-VLAN). As such, upon receipt of an Ethernet frame, the type of VLAN associated with the Ethernet frame may be determined. The type of VLAN provides the receiving node with an indication of a method of determining a scheduling class. A p-VLAN supports multiple scheduling classes. For a p-VLAN, the scheduling class and drop precedence for the received Ethernet frame may be determined based on a “service map” that describes the relationship between the p-bits and forwarding treatment. A v-VLAN supports a single scheduling class. As such, the scheduling class for a received Ethernet frame may be determined based on the VLAN-ID of the received Ethernet frame. The described VLAN QoS information may be configured or signaled across the network. Advantageously, the methods may be applied in connectionless, connection-oriented and path-oriented Ethernet networks.
Abstract:
An edge node of a communication network and method to classify incoming Ethernet traffic based on predetermined criteria. An ingress switch is configured to receive an incoming Ethernet frame. A frame classifier is configured to identify flows and to correlate a flow to a corresponding bandwidth profile and corresponding forwarding treatments defined for the flow.
Abstract:
A method and system for maintaining quality of service parameters for transmissions as a native Ethernet service between a first network having a first communication protocol and a second network having a second communication protocol that is different from the first communication protocol. The interworking device includes a first network interface operable to communicate with the first communication network using the first communication protocol, a second network interface operable to communicate with the second communication network using second communication protocol and a processing unit in communication with the first network interface and the second network interface. The processing unit receives a frame from the first network in the first communication protocol, maps parameters corresponding to quality of service parameters in the first communication protocol to quality of service parameters in the second communication protocol and assembles a data packet in the second communication protocol. The assembled data packet includes mapped quality of service parameters.
Abstract:
A network includes an edge node configured to define per hop behaviors using a set of bits in an Ethernet header of a frame and a core node configured to receive the frame and to forward the frame according to the per-hop-behaviors. The network can also include a defined set of differentiated service classes, each differentiated service class associated with the set of per hop behaviors, indicated in the set of priority bits. The network classifies the Ethernet frame based on at least one of a set of priority bits or information in at least one protocol layer in the frame header of the Ethernet frame and determines a per hop behavior based on the classification.
Abstract:
A method of supporting multiple quality of service (QoS) levels for data being transmitted between two networking devices, such as customer equipment (CE), that use Ethernet and Frame Relay (FR). The method supports multiple QoS services in a network where a first CE is connected to a first edge device (interworking unit) using the Ethernet protocol and a second CE is connected to a second edge device using the FR protocol. The edge devices may be directly connected together or they may be connected through a network backbone using any generally accepted network protocol. The first CE may be connected to the first edge device using a single Ethernet port, multiple Ethernet ports, a single virtual local area network (VLAN), or multiple VLAN's. The second CE is connected to an edge device using a single data link connection (DLC), or multiple DLC's. The method ensures QoS for data transmitted between the first and the second CE via the Ethernet protocol to the FR protocol and vice versa.