Abstract:
An ink jet printer includes a rotary drum, a head unit, and a head supporting mechanism for supporting the head unit detachably attached thereto. The head supporting mechanism includes first and second supporting frames, first and second lower supporting members, an urging member for urging the first end of the head unit put on the first supporting member toward the second supporting frame, and a position adjusting member for sliding the second end of the head unit put on the second supporting member toward the first supporting frame against an urging force from the urging member, wherein the position adjusting member includes a screw inserted in a screw hole formed through the first supporting frame and the first supporting section.
Abstract:
A nozzle unit is provided with nozzle heads of plural colors. Each nozzle head has a large number of ink-jet nozzles arranged side by side in the direction of main scanning. A head holder supports the nozzle unit in such a manner that the unit can move up and down between the printing position where printing is done on the printing sheet held on a rotating body and the non-printing position located above the printing position where the nozzle heads are maintained. The head holder is provided with a driving control circuit for driving the nozzle heads. The head holder, together with the nozzle unit, are movable vertically.
Abstract:
A head loading device includes a print head for ejecting ink from a print position adjacent to a paper sheet to print an image with the ink, and an elevator for moving the print head upward from the print position at the time of non-printing and downward to the print position at the time of printing. The head loading device further includes a three-point support mechanism for supporting, at three points, the print head moved to the print position by the elevator to hold the print head at a preset distance from the paper sheet.
Abstract:
The stacker for stacking sets of cards comprises a container for receiving a set of boarding passes and a stacking section for stacking these boarding passes in the container in the fixed orientation. In the stacker, the container has first and second walls opposing each other, and the stacking section includes a first ejecting portion for ejecting the boarding pass into the container from the second wall side, such that front of the boarding pass faces the first wall, a second ejecting portion for ejecting the boarding passes into the container from the first wall side, such that the back of the boarding pass faces the second wall, and a feeder for supplying the passes to one of the first and second ejecting portions sequentially.
Abstract:
An ink-jet printer includes a rotary drum 10, having a dielectric peripheral surface 11, for rotating at a constant speed, a sheet loader 90 for loading a sheet to the rotary drum 10, a sheet holding system for causing the sheet to be held on the peripheral surface 11 of the rotary drum 10, and a print head section 200 for printing an image on the sheet held on the peripheral surface 11 of the rotary drum 10 by jetting ink to the sheet while the rotary drum 10 makes a predetermined number of rotations. Particularly, the sheet holding system includes a charging section 20 and a supplementary charger section 26. The charging section 20 charges the peripheral surface 11 of the rotary drum 10 on an upstream side of the loading point where the leading end of the sheet loaded by the sheet loader 90 contacts the peripheral surface 11 of the rotary drum 10. The supplementary charger section 26 charges the sheet to supplement the electrostatic attraction force attenuated during the rotation of the rotary drum 10.
Abstract:
An ink jet printer includes a rotary drum having a peripheral surface for holding a paper sheet, a print head for printing an image on the paper sheet held on the peripheral surface by jetting ink to the paper sheet, and an elevator mechanism for setting the print head to a printing position close to the peripheral surfice at a time of printing and to a non-printing position farther from the peripheral surface than the printing position along a normal line of the peripheral surface at a time of maintenance. Particularly, the elevator mechanism includes a pair of guide rails set parallel to the normal line of the peripheral surface, a slider unit rotatably holding the print head and slidably attached to the guide rails, and a driving section for moving the slider unit up and down. The slider unit includes a spindle, a head support member rotatable about the spindle by a rotational force applied due to a weight of the printhead, and a posture regulator for regulating a posture of the print head with respect to the guide rails against the rotational force.
Abstract:
An ink-jet printer includes a rotary drum 10, having a dielectric peripheral surface 11, for rotating at a constant speed, a sheet loader 90 for loading a sheet to the rotary drum 10, a sheet holding system for causing the sheet to be held on the peripheral surface 11 of the rotary drum 10, and a print head section 200 for printing an image on the sheet held on the peripheral surface 11 of the rotary drum 10 by jetting ink to the sheet while the rotary drum 10 makes a predetermined number of rotations. Particularly, the sheet holding system includes a charging section 20 and a supplementary charger section 26. The charging section 20 is charges the peripheral surface 11 of the rotary drum 10 on an upstream side of the loading point where the leading end of the sheet loaded by the sheet loader 90 contacts the peripheral surface 11 of the rotary drum 10. The supplementary charger section 26 charges the sheet to supplement the electrostatic attraction force attenuated during the rotation of the rotary drum 10.
Abstract:
A nozzle unit having a plurality of nozzle heads is vertically moved by an elevating mechanism between a printing position where it prints on a printing surface, and a non-printing position above the printing position and separate from the printing position by a predetermined distance. When the nozzle unit moves to the printing position, it is disengaged from the elevating mechanism to be free from it. The nozzle unit which has moved to the printing position is supported by a head support mechanism to be movable in the main scanning direction.
Abstract:
An apparatus for holding a printing medium on a rotary drum, includes a rotary drum, a suction device, a medium holding mechanism and a medium removing device. The drum has a recess at its outer surface to extend along its rotation center line and rotates at a predetermined speed. A region of the outer surface, which is adjacent to a rearward end of the recess along the rotation direction, is smaller in the diameter than the remaining of the outer surface. The suction device holds by suction the medium onto the outer surface. The holding mechanism has a hook in the recess and selectively drives the hook between close and open positions. At the close position, the hook is placed over the adjacent region while being prevented from radially outwardly projecting from the remaining of the outer surface, and at the open position it is distanced from the adjacent region. When the medium arrives at the adjacent region, its leading end is held by the hook shifted from the open position to the close position and cooperated with the adjacent region and, when the drum rotates a specific number, the hook is returned to the open position. The removing device removes the medium from the outer surface when the drum rotates the specific number and the hook has moved from the close position to the open position.
Abstract:
A ticket issuing machine having a stocker for containing a continuous form, a paper carrier device for carrying the continuous form supplied from the stocker to an inlet of a carrier line, a paper separating device for separating the continuous form at a score thereof in the carrier line, and a printing/recording device for printing or recording data on the continuous form. The paper separating device includes a blade retained so as to be movable toward and away from a score formed in the continuous form, which blade has a rounded bursting portion adapted to face the score, and a blade driving mechanism for driving the blade so as to bring the blade into abutment against the score for separation of the continuous form at the score. Accordingly, the continuous form can be reliably separated at the score with a small force.