Abstract:
A nitride semiconductor device in which contact resistance between an ohmic electrode and an ohmic recess portion is reduced and a method of manufacturing the nitride semiconductor device are provided. The nitride semiconductor device includes: a first nitride semiconductor layer formed on a substrate; a second nitride semiconductor layer formed on the first nitride semiconductor layer and having a bandgap wider than a bandgap of the first nitride semiconductor layer; an ohmic recess portion formed in at least the second nitride semiconductor layer; and an ohmic electrode provided in contact with the ohmic recess portion. The ohmic recess portion includes a corrugated structure in at least a part of a plane in contact with the ohmic electrode.
Abstract:
A nitride semiconductor device includes an active layer formed between an n-type cladding layer and a p-type cladding layer, and a current confining layer having a conductive area through which a current flows to the active layer. The current confining layer includes a first semiconductor layer, a second semiconductor layer and a third semiconductor layer. The second semiconductor layer is formed on and in contact with the first semiconductor layer and has a smaller lattice constant than that of the first semiconductor layer. The third semiconductor layer is formed on and in contact with the second semiconductor layer and has a lattice constant that is smaller than that of the first semiconductor layer and larger than that of the second semiconductor layer.
Abstract:
A nitride semiconductor device includes a first nitride semiconductor layer formed on a substrate, a defect induced layer formed on the first nitride semiconductor layer, and a second nitride semiconductor layer formed on the defect induced layer, contacting the defect induced layer, and having an opening through which the defect induced layer is exposed. The defect induced layer has a higher crystal defect density than those of the first and second nitride semiconductor layers.
Abstract:
A nitride semiconductor device in which contact resistance between an ohmic electrode and an ohmic recess portion is reduced and a method of manufacturing the nitride semiconductor device are provided. The nitride semiconductor device includes: a first nitride semiconductor layer formed on a substrate; a second nitride semiconductor layer formed on the first nitride semiconductor layer and having a bandgap wider than a bandgap of the first nitride semiconductor layer; an ohmic recess portion formed in at least the second nitride semiconductor layer; and an ohmic electrode provided in contact with the ohmic recess portion. The ohmic recess portion includes a corrugated structure in at least a part of a plane in contact with the ohmic electrode.
Abstract:
A nitride semiconductor device includes a first nitride semiconductor layer formed on a substrate, a defect induced layer formed on the first nitride semiconductor layer, and a second nitride semiconductor layer formed on the defect induced layer, contacting the defect induced layer, and having an opening through which the defect induced layer is exposed. The defect induced layer has a higher crystal defect density than those of the first and second nitride semiconductor layers.
Abstract:
A nitride semiconductor device includes an active layer formed between an n-type cladding layer and a p-type cladding layer, and a current confining layer having a conductive area through which a current flows to the active layer. The current confining layer includes a first semiconductor layer, a second semiconductor layer and a third semiconductor layer. The second semiconductor layer is formed on and in contact with the first semiconductor layer and has a smaller lattice constant than that of the first semiconductor layer. The third semiconductor layer is formed on and in contact with the second semiconductor layer and has a lattice constant that is smaller than that of the first semiconductor layer and larger than that of the second semiconductor layer.