Abstract:
Battery management circuitry for an implantable medical device such as an implantable neurostimulator is described. The circuitry has a T-shape with respect to the battery terminal, with charging circuitry coupled between rectifier circuitry and the battery terminal on one side of the T, and load isolation circuitry coupled between the load and the battery terminal on the other side. The load isolation circuitry can comprise two switches wired in parallel. An undervoltage fault condition opens both switches to isolate the battery terminal from the load to prevent further dissipation of the battery. Other fault conditions will open only one the switches leaving the other closed to allow for reduced power to the load to continue implant operations albeit at safer low-power levels. The battery management circuitry can be fixed in a particular location on an integrated circuit which also includes for example the stimulation circuitry for the electrodes.
Abstract:
Communication and charging circuitry for an implantable medical device is described having a single coil for receiving charging energy and for data telemetry. The circuitry removes from the AC side of the circuit a tuning capacitor and switch traditionally used to tune the tank circuitry to different frequencies for telemetry and charging. As such, the tank circuitry is simplified and contains no switchable components. A switch is serially connected to the storage capacitor on the DC side of the circuit. During telemetry, the switch is opened, thus disconnecting the storage capacitor from the tank circuit, and alleviating concerns that this capacitor will couple to the tank circuit and interfere with telemetry operations. During charging, the switch is closed, which allows the storage capacitor to couple to the tank circuitry through the rectifier during some portions of the tank circuitry's resonance.
Abstract:
Communication and charging circuitry for an implantable medical device is described having a single coil for receiving charging energy and for data telemetry. The circuitry removes from the AC side of the circuit a tuning capacitor and switch traditionally used to tune the tank circuitry to different frequencies for telemetry and charging. As such, the tank circuitry is simplified and contains no switchable components. A switch is serially connected to the storage capacitor on the DC side of the circuit. During telemetry, the switch is opened, thus disconnecting the storage capacitor from the tank circuit, and alleviating concerns that this capacitor will couple to the tank circuit and interfere with telemetry operations. During charging, the switch is closed, which allows the storage capacitor to couple to the tank circuitry through the rectifier during some portions of the tank circuitry's resonance.
Abstract:
The disclosed means of determining alignment between an external charger and an implantable medical device (IMD) involves the use of reflected impedance modulation, i.e., by measuring at the external charger reflections arising from modulating the impedance of the charging coil in the IMD. During charging, the charging coil in the IMD is pulsed to modulate its impedance. The difference in the coil voltage (ΔV) produced at the external charger as a result of these pulses is assessed and is used by the external charger to indicate coupling. If the magnitude of ΔV is above a threshold, the external charger considers the coupling to the IMD to be adequate, and an alignment indicator in the external charger is controlled accordingly. The magnitude of Vcoil can be assessed in addition to ΔV to determine alignment with the IMD with improved precision, and/or to further define a high quality alignment condition.
Abstract:
A base station for passively recharging a battery in an implant without patient involvement is disclosed. The base station can be hand held or may comprise equipment configured to be placed at a fixed location, such as under a bed, on or next to a wall, etc. The base station can generate electric and magnetic fields (E-field and B-field) that couple with an antenna and a receiving coil within the implant to generate a charging current for charging the implant's battery. No handling or manipulation on part of the patient is necessary; the implant battery is passively charged whenever the patient is within range of either the magnetic or electric charging fields generated by base station. Charging using the B-field occurs when the IPG is at a relatively short distance from the base station, while charging using the E-field occurs at longer distances. Back telemetry from the implant can inform the base station whether B-field or E-field charging is indicated, and is preferred if possible for its ability to transfer higher amounts of power to the implant.
Abstract:
To recharge an implanted medical device, an external device, typically in the form of an inductive charger, is placed over the implant to provide for transcutaneous energy transfer. The external charging device can be powered by a rechargeable battery. Since the battery is in close proximity to the charge coil, the large magnetic field produced by the charge coil induces eddy currents that flow on the battery's metallic case, often resulting in undesirable heating of the battery and reduced efficiency of the charger. This disclosure provides a means of shielding the battery from the magnetic field to reduce eddy current heating, thereby increasing efficiency. In one embodiment, the magnetic shield consists of one or more thin ferrite plates. The use of a ferrite shield allows the battery to be placed directly over the charge coil as opposed to outside the extent of the charge coil.
Abstract:
An improved external charger for a battery in an implantable medical device (implant), and technique for charging the battery using such improved external charger, is disclosed. In one example, simulation data is used to model the power dissipation of the charging circuitry in the implant at varying levels of implant power. A power dissipation limit is chosen to constrain the charging circuitry from producing an inordinate amount of heat to the tissue surrounding the implant, and duty cycles are determined for the various levels of input intensities to ensure that the power limit is not exceeded. A maximum simulated average battery current determines the optimal (i.e., quickest) battery charging current, and at least an optimal value for a parameter indicative of that current, for example, the voltage across the battery charging circuitry, is determined and stored in the external charger. During charging, the actual value for that parameter is reported from the implant to the external charger, which in turn adjusts the intensity and/or duty cycle of the magnetic charging field consistent with the simulation to ensure that charging is as fast as possible, while still not exceeding the power dissipation limit.
Abstract:
The disclosed system for providing closed loop charging between an external charger and an implantable medical device such as an IPG involves the use of reflected impedance modulation, i.e., by measuring at the external charger reflections arising from modulating the impedance of the charging coil in the IPG. During charging, the charging coil in the IPG is periodically pulsed to modulate its impedance. The magnitude of the change in the coil voltage produced at the external charger ΔV as a result of these pulses is assessed and is used by the controller circuitry in the external charger as indicative of the coupling between the external charger and the IPG. The external charger adjusts its output power (e.g., Icharge) in accordance with the magnitude of ΔV, thus achieving closed loop charging without the need of telemetering coupling parameters from the IPG.
Abstract:
A base station for passively recharging a battery in an implant without patient involvement is disclosed. The base station can be hand held or may comprise equipment configured to be placed at a fixed location, such as under a bed, on or next to a wall, etc. The base station can generate electric and magnetic fields (E-field and B-field) that couple with an antenna and a receiving coil within the implant to generate a charging current for charging the implant's battery. No handling or manipulation on part of the patient is necessary; the implant battery is passively charged whenever the patient is within range of either the magnetic or electric charging fields generated by base station. Charging using the B-field occurs when the IPG is at a relatively short distance from the base station, while charging using the E-field occurs at longer distances. Back telemetry from the implant can inform the base station whether B-field or E-field charging is indicated, and is preferred if possible for its ability to transfer higher amounts of power to the implant.
Abstract:
An improved external charger for a battery in an implantable medical device (implant), and technique for charging the battery using such improved external charger, is disclosed. In one example, simulation data is used to model the power dissipation of the charging circuitry in the implant at varying levels of implant power. A power dissipation limit is chosen to constrain the charging circuitry from producing an inordinate amount of heat to the tissue surrounding the implant, and duty cycles are determined for the various levels of input intensities to ensure that the power limit is not exceeded. A maximum simulated average battery current determines the optimal (i.e., quickest) battery charging current, and at least an optimal value for a parameter indicative of that current, for example, the voltage across the battery charging circuitry, is determined and stored in the external charger. During charging, the actual value for that parameter is reported from the implant to the external charger, which in turn adjusts the intensity and/or duty cycle of the magnetic charging field consistent with the simulation to ensure that charging is as fast as possible, while still not exceeding the power dissipation limit.