摘要:
A method and apparatus is disclosed for communicating with a host. In one embodiment, a smart card has an IC with voltage conditioning circuitry and a pull-up resistor. The smart card, when inserted in a smart card reader coupled to the host, is capable of signaling the host over a bus using the pull-up resistor selectively coupled to a voltage output of the voltage conditioning circuitry and a first output of the smart card. The voltage conditioning circuitry output is selectively coupled to the first output through the resistor, responsive to the device being powered by the bus but not transmitting. This tends to pull up the first output to the voltage level of the voltage source, which makes the smart card capable of being properly detected by the host upon the bus being driven by a host. Selectively disconnecting the pull-up resistor while the smart card is transmitting or receiving results in a more balanced differential output signal. Since the pull-up resistor and voltage conditioning circuitry supplying the proper voltage to the pull-up resistor are an integrated part of the IC, no separate contact is required to supply voltage to the resistor. This permits the smart card to be compatible with the contact configuration of certain existing smart cards, and eliminates a need for the pull-up resistor or voltage conditioning circuitry to be included in the smart card reader.
摘要:
In one form of the invention, a method for generating a local clock signal responsive to signals on a Universal Serial Bus (“USB”) includes generating a frequency-bearing clock signal by a free running oscillator on an integrated circuitry chip of a device coupled to the USB. The oscillator runs at a frequency that is substantially stable but initially known with substantial inaccuracy. A single ended bit-serial signal is extracted from received signals sent by a USB host or hub and timing signals are responsively asserted. A bit pattern is detected in the single ended bit-serial signal and intervals are measured during which the timing signals are asserted. The period P of the local clock signal is adjusted responsive to one of the measured intervals. In one variant, the initial inaccuracy is at least partly because the oscillator consists solely of circuitry on the chip.
摘要:
A method and device are disclosed for detecting successful transfers between a Universal Serial Bus (USB) port and a USB smart card and generating a signal that provides an indication of the USB transaction activity. This USB transaction activity signal is modulated according to the USB transaction activity and drives a Light Emitting Diode (LED) in a preferred embodiment of the invention. A counter internal to the USB smart card scales the transaction activity signal such that it is perceptible to the user. Because the current through the LED depends upon the USB transaction activity, the brightness of the LED varies according to the USB transaction activity. The LED may be driven from a current mirror sink or source, or a current switch sink or source.
摘要:
A multi-mode IC is provided for operating in a first mode such as an ISO mode in accordance with International Standards Organization 7816 (ISO 7816) protocol, and a second, non-ISO mode, such as a USB mode in accordance with Universal Serial Bus (USB) protocol. The multi-mode IC is preferably in a smart card and includes a microprocessor and an external interface. The external interface comprises a voltage supply pad, a ground pad, a first set of pads for the first mode, and 2 second set of pads for the second mode. The first set of pads preferably include a reset pad, a clock pad and an input/output pad in accordance with the ISO 7816 protocol, and may also include a variable supply voltage pad in accordance with the ISO 7816 protocol. The IC further includes a mode configuration circuit for detecting a mode condition on one pad of the first set of pads, and configuring the IC in the ISO mode or the non-ISO mode depending on the result. Once the IC is configured in a particular mode, it will operate in only that mode until the next power-on reset sequence.