Abstract:
A process to recover hydrocarbons from a reservoir, where the hydrocarbons have an initial viscosity greater than 100,000 cp, preferably greater than 1,000 cp, the process including: (a) Initially injecting oxygen into the reservoir; (b) Allowing for combustion of the oxygen to vaporize connate water in the hydrocarbon reservoir; (c) Collecting hydrocarbons in a substantially horizontal production well in the reservoir and where the substantially horizontal production well has a length greater than about 800 metres.
Abstract:
Systems and methods of removing sulfur from a gas stream comprising hydrogen sulfide (H2S) are provided. The systems and methods may utilize iodine to remove sulfur from the gas stream. In certain systems and methods, the iodine may be regenerated. In particular, the present systems and methods may be capable of reducing sulfur content in a gas stream comprising hydrogen sulfide H2S gas to levels that are undetectable.
Abstract:
A steam assisted gravity drainage process that includes the addition of oxygen for recovering hydrocarbons from a hydrocarbon reservoir is described. Steam and an oxygen-containing gas are separately and continuously injected into the hydrocarbon reservoir to heat hydrocarbons and water to drain, by gravity, to a horizontal production well. The process can include controlling the ratio of oxygen and steam from about 0.05 to about 1.00 (v/v). The steam assisted gravity drainage process can further include removing non-condensable combustion gases from the reservoir to avoid undesirable pressures in the reservoir. The non-condensable combustion gases can be removed from the reservoir by at least one separate vent-gas well.
Abstract:
A process to recover hydrocarbons, from a hydrocarbon reservoir having a bottom, using a substantially horizontal production well, the substantially horizontal production well having a toe and a heel, the process including: (a) injecting oxygen into the hydrocarbon reservoir, the horizontal production well having at least one perforation zone for contact with the reservoir; (b) injecting steam into the hydrocarbon reservoir; the oxygen producing in situ heat and in situ carbon dioxide by combustion and the steam producing in situ heat by conduction and condensation; the in situ carbon dioxide dissolving into the liquid hydrocarbon, lowering its viscosity; (c) recovering the reservoir liquid hydrocarbons of lowered viscosity using the substantially horizontal production well; and (d) optionally conveying the recovered liquid hydrocarbons to the surface; where the process is absent a removal step of any non-condensable gas from the reservoir.
Abstract:
A Single Well Steam Assisted Gravity Drainage (SWSAGD) process to recover liquid hydrocarbons from an underground hydrocarbon reservoir, wherein the single well includes a single substantially horizontal well including a heel area and a toe area, wherein the toe area of the horizontal well extends upwardly into the reservoir, the process including 1- injecting steam into the reservoir via a steam injection area, proximate the toe area of the horizontal well, 2- allowing the steam to condense causing heated hydrocarbon liquids and water to drain into a liquid recovery zone of the horizontal well between the toe area and the heel area of the horizontal well, and 3- recovering the heated hydrocarbon liquids to the ground surface from the liquid recovery zone.
Abstract:
The use of a water recycle ratio for controlling at least one Steam Assisted Gravity Drainage (SAGD) parameter in a leaky bitumen reservoir. Further, a process to control a steam injection rate for an individual SAGD well pair, in a leaky bitumen reservoir wherein the process replaces a pressure control for an SAGD steam injection rate with a volume control determined by a Water Recycle Ratio (WRR).
Abstract:
A cyclic remediation process to restore oil recovery from a primary oil production well that has watered off from bottom water encroachment (cone or crest) whereby: (a) the primary oil production well has a produced water cut in excess of 95% (v/v); (b) the oil is heavy oil, with in-situ viscosity >1000 cp; wherein said process includes: (c) injecting a steam slug with a volume of 0.5 to 5.0 times the cumulative primary oil production, with steam volumes measured as water volumes; (d) shutting in the well for a soak period, after the steam injection is complete; and (e) producing the well until the water cut exceeds 95%.
Abstract:
A SAGDOX satellite system for recovering hydrocarbons includes a central SAGDOX site, at least one SAGDOX satellite site, and a pipeline corridor for communication between the central SAGDOX site and the SAGDOX satellite site. The satellite system is designed to recover hydrocarbons using a SAGDOX process at the satellite site and transfer recovered hydrocarbons to the central site.
Abstract:
There is provided a process to recover bitumen from a subterranean hydrocarbon reservoir. The process includes injecting steam and oxygen separately into the bitumen reservoir. When mixed in the reservoir, the mix is in the range of 5 to 50% O2. The process also includes producing hot bitumen and water using a horizontal production well, and producing/removing non-condensable combustion gases to control reservoir pressure.
Abstract:
A process to recover hydrocarbons from a reservoir having at least one lean zone, wherein said lean zone has an initial bitumen saturation level less than about 0.6, said process including: i) Initially injecting of oxygen into said reservoir; ii) Allowing for combustion of said oxygen to vaporize connate water in said at least one lean zone; and iii) Recovering said hydrocarbons from said reservoir.