Abstract:
An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.
Abstract:
Alumina is reduced to molten aluminum in an electrolytic cell containing a molten electrolyte bath composed of halide salts and having a density less than alumina and aluminum and a melting point less than aluminum. The cell comprises a plurality of vertically disposed, spaced-apart, non-consumable, dimensionally stable anodes and cathodes. Alumina particles are dispersed in the bath to form a slurry. Current is passed between the electrodes, and oxygen bubbles form at the anodes, and molten aluminum droplets form at the cathodes. The oxygen bubbles agitate the bath and enhance dissolution of the alumina adjacent the anodes and inhibit the alumina particles from settling at the bottom of the bath. The molten aluminum droplets flow downwardly along the cathodes and accumulate at the bottom of the bath.
Abstract:
Alcohol and water are mixed as liquids in a volume ratio of water to alcohol in the range 0.3-1.0 to 1. The liquid mixture is heated in heat exchanging relation with the exhaust conduit of a gasoline operated internal combustion engine, to convert the mixture to a gaseous state which is then combined with a mixture of gasoline and air for introduction into the engine. The water-alcohol mixture is 3-14 vol. % of the gasoline.
Abstract:
Waste newsprint is defibered in an aqueous bath to which is added a deinking agent. The resulting slurry or pulp is rinsed, drained and formed into paper sheets. The deinking agent is a C.sub.14 to C.sub.20 alpha olefin sulfonate or a mixture of C.sub.18 alpha olefin sulfonate and a non-ionic detergent, depending upon the conditions of the deinking bath.
Abstract:
An organic reactant is sulfonated by injecting it into a stream of gas comprising sulfur trioxide, at a venturi, and the resulting reaction mixture is quenched with a stream of cooled, recycled reaction product immediately downstream of the venturi in a conduit in which particles of reaction mixture are agglomerated into a film of the recycle stream and in which additional sulfonation reaction occurs.
Abstract:
A liquid containing carbon particles in a predetermined concentration is circulated through a multiplicity of channels in a solar panel to heat the liquid which is then circulated through a heat exchanger. The solar panel is clear and uncolored, and the surfaces of the panel contacting the liquid are wetted with a wetting agent added to the liquid. The carbon particles are also wetted. The liquid is uniformly distributed through all the channels in the panel.
Abstract:
An organic reactant is sulfonated by injecting it into a stream of gas comprising sulfur trioxide, at a venturi, and the resulting reaction mixture is quenched with a stream of cooled, recycled reaction product immediately downstream of the venturi in a conduit in which particles of reaction mixture are agglomerated into a film of the recycle stream and in which additional sulfonation reaction occurs.
Abstract:
An apparatus is provided wherein organic reactant is sulfonated by injecting it into a stream of gas comprising sulfur trioxide, at a venturi, and the resulting reaction mixture is quenched with a stream of cooled, recycled reaction product immediately downstream of the venturi in a conduit in which particles of reaction mixture are agglomerated into a film of the recycle stream and in which additional sulfonation reaction occurs.
Abstract:
An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode. Removing sulfur from the bath can also minimize cathode deposits. Aluminum formed on the cathode can be removed directly from the cathode.
Abstract:
An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises molten electrolyte having the following ingredients: AlF3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound is, a fluoride; oxide, or carbonate. The metal is nickel, iron, copper, cobalt, or molybdenum. The bath is employed in a combination including a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the instant bath during electrolytic reduction of alumina to aluminum improves the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.