摘要:
A process for the preparation and modification of additives, with a zeolite base and a high silica alumina ratio (SAR) like the ZSM-5, to increase the yield of propene and LPG in low severity FCC operations, that seeks to maximize the production of medium-distillates with low aromaticity and to minimize molecular cracking in the LCO range. The additives involved guarantee an increase in light olefin yields without altering the yield or the quality of the LCO produced. The innovative process includes surprising actions from rare earths (RE) on the active sites of zeolite, that at once partially block their pores and, in this way, make molecular cracking in the medium-distillate range difficult, which preferably occur at low reaction temperatures and keeps the remaining sites quite active. These sites are sufficiently active to crack smaller molecules in the gasoline range, guaranteeing an overall increase in light olefins and allowing the additive involved to be used industrially in operations to maximize medium-distillates in an FCC unit. This new additive may be obtained by modifying any commercial ZSM-5 zeolite additive.
摘要:
A process for the preparation and modification of additives, with a zeolite base and a high silica alumina ratio (SAR) like the ZSM-5, to increase the yield of propene and LPG in low severity FCC operations, that seeks to maximize the production of medium-distillates with low aromaticity and to minimize molecular cracking in the LCO range. The additives involved guarantee an increase in light olefin yields without altering the yield or the quality of the LCO produced. The innovative process includes surprising actions from rare earths (RE) on the active sites of zeolite, that at once partially block their pores and, in this way, make molecular cracking in the medium-distillate range difficult, which preferably occur at low reaction temperatures and keeps the remaining sites quite active. These sites are sufficiently active to crack smaller molecules in the gasoline range, guaranteeing an overall increase in light olefins and allowing the additive involved to be used industrially in operations to maximize medium-distillates in an FCC unit. This new additive may be obtained by modifying any commercial ZSM-5 zeolite additive.
摘要:
The present invention concerns the field of fluid catalytic cracking (FCC) processes. The invention provides a process increasing production of LPG and propene in FCC units operating under conditions of maximisation of middle distillates of low aromaticity, such that they may be incorporated into the diesel oil pool. The invention also relates to the preparation and employment of additives based on zeolites having small pores, such as ferrierite (FER), in catalytic systems for FCC units, wherein conditions of low severity are adopted with a view to increasing yields of LPG and light olefins whilst improving stability of petrol. The invention also provides an original catalytic system, being more efficient than catalytic systems known in the state of the art, to increase the yield of LPG and propene without prejudicing the yield and quality of LCO. Furthermore it provides a method of preparation of an additive for said process employing the zeolite ferrierite.
摘要:
Additives for mixing into the base catalyst inventory of the fluid catalytic cracking (FCC) process units, so as to achieve a high selectivity of light olefins (ethylene and propylene), are described. Such additives comprise an FER zeolite and an MFI zeolite, the MFI zeolite preferably being zeolite ZSM-5. The mixture of the additive in a concentration greater than 2% w/w relative to the base catalyst of an FCC unit allows greater selectivity for light olefins, propylene and ethylene, while maintaining catalytic activity.