摘要:
Porous soy protein-based scaffolds and methods for making the scaffolds using 3D printing techniques are provided. Also provided are tissue growth scaffolds comprising the porous soy protein-based scaffolds and methods for growing tissue on the tissue growth scaffolds. The porous soy protein-containing scaffold comprises a plurality of layers configured in a vertical stack, each layer comprising a plurality of strands comprising denatured soy proteins.
摘要:
Disclosed herein are novel peptide amphiphile molecules and compositions composed of a peptide sequence that non-covalently binds the growth factor TGF-β1. Also disclosed are methods of using these peptide amphiphiles to create a gel scaffold in situ that enhances articular cartilage regeneration when used in combination with microfracture. Significant improvement in tissue quality and overall O'Driscoll histological scores were observed in rabbits with full thickness articular cartilage defects treated with the TGF-binding peptide amphiphile. The gel can further serve as a delivery vehicle for recombinant TGF-β1 protein growth factor. Scaffolds that localize and retain chondrogenic growth factors may synergistically enhance cartilage repair when combined with microfracture, by inducing bone marrow mesenchymal stem cells into chondrogenic differentiation. This invention represents a promising new biomimetic approach to enhance current techniques of articular cartilage regeneration in the clinical setting.
摘要:
Disclosed herein are novel peptide amphiphile molecules and compositions composed of a peptide sequence that non-covalently binds the growth factor TGF-β1. Also disclosed are methods of using these peptide amphiphiles to create a gel scaffold in situ that enhances articular cartilage regeneration when used in combination with microfracture. Significant improvement in tissue quality and overall O'Driscoll histological scores were observed in rabbits with full thickness articular cartilage defects treated with the TGF-binding peptide amphiphile. The gel can further serve as a delivery vehicle for recombinant TGF-β1 protein growth factor. Scaffolds that localize and retain chondrogenic growth factors may synergistically enhance cartilage repair when combined with microfracture, by inducing bone marrow mesenchymal stem cells into chondrogenic differentiation. This invention represents a promising new biomimetic approach to enhance current techniques of articular cartilage regeneration in the clinical setting.