Abstract:
A vapor chamber includes a sealed flattened casing containing working liquid therein, a wick structure arranged on an inner face of the casing, a supporting plate received in the casing and a plurality of supporting posts. The supporting plate defines a plurality of fixing holes therein. The supporting posts are engagingly received in the fixing holes of the supporting plate. Top and bottom ends of the supporting posts engage with the wick structure to reinforce a structure of the vapor chamber.
Abstract:
An LED lamp includes a heat sink, a centrifugal blower and a plurality of LED modules. The heat sink includes a base plate defining an air intake adjacent to an end of the base plate and a plurality of fins extending downwardly from a bottom surface of the base plate, between the air intake and an opposite remote end of the base plate. The centrifugal blower is mounted on the bottom surface of the base plate and located between the air intake and the fins. The LED modules are fixed on a top surface of the base plate of the heat sink. The housing engages with the base plate to enclose the centrifugal blower and the fins therein and cooperates with the base plate to define an exhaust port between the opposite remote end of the base plate and a corresponding sidewall of the housing.
Abstract:
A liquid-cooling device includes a heat exchanger defining a cavity therein and a liquid-guiding component received in the cavity. The liquid-guiding component includes a body and a fixing portion extending from the body and fixed to the heat exchanger. A first liquid passage is defined through the body and a second liquid passage is formed between the body and an inner sidewall of the heat exchanger surrounding the cavity. The first liquid passage is in fluid communication with the second liquid passage via a bottom of the cavity. An outlet and an inlet are formed at an end of the liquid-guiding component and in fluid communication with the first and second liquid passages. Liquid flows in the cavity of the heat exchanger via the first liquid passage and has a sufficient contact with the inner sidewall of the heat exchanger.
Abstract:
A heat sink includes a heat spreader for absorbing heat from a heat-generating source, a tank covering on the heat spreader and hermetically engaging with the heat spreader, a first wick layer formed on an inner face of the tank, a second wick layer formed on an inner face of the heat spreader, and a supporting member located between the tank and the heat spreader. A chamber is defined between the tank and the heat spreader and contains working fluid therein. The supporting member is arranged in a wave shape and supports the first wick layer and the second wick layer.
Abstract:
A heat dissipation device includes a heat conductive member, a fin unit coupled to a bottom surface of the heat conductive member and a plurality of LED modules attached to a top surface of the heat conductive member. The heat conductive member consists of a first plate, a second plate parallel to the first plate and a plurality of posts sandwiched between the first and second plates. Peripheries of the first and second plate are in a hermetical conjunction with each other to form a chamber containing a phase-changeable working fluid therein. The first and second plates therein define a plurality of through orifices. The posts each define therein a screwed orifice which is in alignment with corresponding through orifices of the first and second plates respectively and threadedly receives a screw extending through the LED module.
Abstract:
A heat spreader for cooling an electronic component includes a lower plate, an upper plate fixed on the lower plate, a working liquid contained between the lower plate and the upper plate, and a wick structure formed between the lower plate and the upper plate. Each of the upper plate and the lower plate defines a cavity receiving a portion of the wick structure therein, and a plurality of grooves extending radially from the cavity to a periphery thereof.
Abstract:
A heat dissipation device for removing heat from LED chips includes a heat sink and a plurality of substrates. The heat sink comprises a base plate. A plurality of fins extends upwardly from the base plate. The substrates each have a unidirectional heat transfer and are attached to a bottom face of the heat sink. Each of the substrates defines a first wall on which The LED chips are mounted and a second wall coupled to the heat sink. The substrates only transfer heat from the first wall to the second wall and restrict the heat transfer in a reverse direction. When the LED chips generate heat, the heat is transferred to the fins of the heat sink via the unidirectional substrates to lower temperature of the LED chips.
Abstract:
A heat dissipation device for removing heat from LED chips includes a finned heat sink, a plurality of heat pipes and a plurality of heat conductive substrates. The heat sink comprises a base plate and a plurality of fins formed on the base plate. The heat pipes which transfer heat in a unidirectional manner are embedded in the base plate. Each of the heat pipes defines a first wall and a second wall coupled to the heat sink. The heat pipes only transfer heat from the first walls to the second walls and restrict a heat transfer in a reversed direction. The substrates are in contact with first walls of the heat pipes. The LED chips are mounted on the substrates. When the LED chips generate heat, the heat is transferred to the fins via the unidirectional heat pipes to lower the temperature of the LED chips.
Abstract:
A memory module assembly includes a printed circuit board (10) having a heat-generating electronic component (14) thereon, and first and second heat-dissipation plates (20), (30) attached on opposite sides of the printed circuit board. The first heat-dissipation plate includes a first hook (24) extending from a side thereof and the first hook includes a resisting portion (242) extending from an end of the first heat-dissipation plate and a first engaging portion (244) extending from a free end of the resisting portion for resisting the printed circuit board and the second heat-dissipation plate. The second heat-dissipation plate defines a depressed portion (34) in a side thereof for engaging with the first hook. The other sides of the first and second heat-dissipation plates engage with each other to clamp the printed circuit board between the first and second heat-dissipation plates.
Abstract:
An LED module includes a latching component, a frame holding an LED thereon, a heat spreader located in the latching component and a heat transfer member having a heat-dissipating unit remote from the LED and a heat pipe thermally connecting with the heat spreader, the LED and the heat-dissipating unit. The latching component cooperates with the heat spreader to tightly press the frame being attached on the heat spreader. The heat transfer member thermally connects with the heat spreader and transfers heat from the LED to an ambient environment. The latching component has two spring pieces pushing the frame toward the heat spreader and the heat pipe. The spring pieces electrically engage with the frame to thereby electrically connect with the LED.