Abstract:
A rotational joint assembly and a method for constructing a rotational joint assembly are provided. The rotational joint assembly includes a first rotational component, a second rotational component coupled to the first rotational component such that the second rotational component is rotatable relative to the first rotational component in first and second rotational directions about an axis, and a flexure member, being deflectable in first and second deflection directions, coupled to at least one of the first and second rotational components such that when the second rotational component is rotated relative to the first rotational component in each of the first and second rotational directions about the axis, the flexure member is deflected in the first deflection direction and exerts a force on the second rotational component opposing the rotation.
Abstract:
A control moment gyroscope (CMG) is provided for deployment on a spacecraft. The CMG includes an inner gimbal assembly (IGA), which, in turn, includes an IGA housing, a rotor rotatably coupled to the IGA housing, and a spin motor coupled to the IGA housing and configured to rotate the rotor about a spin axis. The CMG further comprises a stator assembly, which includes: (i) a stator assembly housing rotatably coupled to the IGA housing, and (ii) a torque module assembly coupled to the stator assembly housing and configured to rotate the IGA about a gimbal axis. A gimbal bearing is disposed between the IGA housing and the stator assembly housing. The gimbal bearing resides between the spin axis and the torque module assembly such that the distance between the gimbal bearing and the spin axis is less than the distance between the gimbal bearing and the torque module assembly.
Abstract:
A rotational joint assembly and a method for constructing a rotational joint assembly are provided. The rotational joint assembly includes a first rotational component, a second rotational component coupled to the first rotational component such that the second rotational component is rotatable relative to the first rotational component in first and second rotational directions about an axis, and a flexure member, being deflectable in first and second deflection directions, coupled to at least one of the first and second rotational components such that when the second rotational component is rotated relative to the first rotational component in each of the first and second rotational directions about the axis, the flexure member is deflected in the first deflection direction and exerts a force on the second rotational component opposing the rotation.
Abstract:
Systems are provided for damping vibrations from a payload. In an embodiment, and by way of example only, the system includes an isolation strut and a gas line. The isolation strut includes a bellows and a piston. The bellows has a first end and a second end, the first end being enclosed, and the second end attached to the piston to define a chamber. The piston includes a damping annulus therethrough having a gas inlet and a gas outlet. The gas inlet provides flow communication to the chamber of the bellows. The gas line is coupled to the isolation strut and is in fluid communication with the gas outlet thereof. The system is hermetically sealed to contain a gas therein.
Abstract:
A self-contained momentum control system (MCS) for a spacecraft is provided for small satellites. The MCS features a miniaturized gyroscopic rotor with a rotational speed in excess of 20,000 RPM. The MCS includes at least three control moment gyroscopic mechanical assemblies (CMAs) rigidly mounted within a single enclosure, where each CMA mounted in an orientation whereby the longitudinal axis of each CMA is either orthogonal to every other CMA or is parallel to another CMA but in the opposite orientation. In order to further reduce the size of the MCS, an electronics package that is configured to interface command and control signals with and to provide power to the CMAs is included within the MCS enclosure. A plurality of shock isolation devices are used to secure each of the CMAs to the enclosure in order to reduce the launch load upon the CMAs thereby allowing the use of smaller rotor spin bearings. The MCS enclosure surrounding the CMAs and support structure is hermetically sealed.
Abstract:
A user input device for a vehicular electrical system is provided. The user input device includes a handle sized and shaped to be gripped by a human hand and a gimbal assembly within the handle. The gimbal assembly includes a first gimbal component, a second gimbal component coupled to the first gimbal component such that the second gimbal component is rotatable relative to the first gimbal component about a first axis, and a third gimbal component coupled to the second gimbal component such that the third gimbal component is rotatable relative to the second gimbal component about a second axis.
Abstract:
Embodiments of a gas turbine engine are provided, as are embodiments of an annular bearing support damper and embodiments of a method for manufacturing an annular bearing support damper. In one embodiment, the gas turbine engine includes engine housing and a rotor assembly disposed within the engine housing. A rotor bearing supports the rotor assembly within the engine housing, and an annular bearing support damper is positioned between the rotor bearing and the engine housing. The support damper includes an annular housing assembly having a damping fluid annulus. An array of circumferentially-spaced damper pistons is movably coupled to the annular housing assembly and fluidly communicates with the damping fluid annulus. The damper pistons are fixedly coupled to the rotor bearing and moves in conjunction therewith to force the flow of damping fluid around the annulus during engine operation to reduce the transmissions of vibrations to the engine housing.
Abstract:
A self-contained momentum control system (MCS) for a spacecraft is provided for small satellites. The MCS features a miniaturized gyroscopic rotor with a rotational speed in excess of 20,000 RPM. The MCS includes at least three control moment gyroscopic mechanical assemblies (CMAs) rigidly mounted within a single enclosure, where each CMA mounted in an orientation whereby the longitudinal axis of each CMA is either orthogonal to every other CMA or is parallel to another CMA but in the opposite orientation. In order to further reduce the size of the MCS, an electronics package that is configured to interface command and control signals with and to provide power to the CMAs is included within the MCS enclosure. A plurality of shock isolation devices are used to secure each of the CMAs to the enclosure in order to reduce the launch load upon the CMAs thereby allowing the use of smaller rotor spin bearings. The MCS enclosure surrounding the CMAs and support structure is hermetically sealed.
Abstract:
A signal torque module assembly (STMA) is provided for use within a control moment gyroscope of the type that includes a rotor assembly. The STMA comprises a torque module assembly (TMA), which includes: (i) a TMA housing, (ii) a torque motor coupled to the TMA housing, and (iii) a gear train coupled to the TMA housing and mechanically coupling the torque motor to the rotor assembly. A signal module assembly is coupled to the TMA housing, and an elongated connector electrically couples the signal module assembly and the rotor assembly. The elongated connector extends through the gear train.
Abstract:
A user input device for a vehicular electrical system is provided. The user input device includes a handle sized and shaped to be gripped by a human hand and a gimbal assembly within the handle. The gimbal assembly includes a first gimbal component, a second gimbal component coupled to the first gimbal component such that the second gimbal component is rotatable relative to the first gimbal component about a first axis, and a third gimbal component coupled to the second gimbal component such that the third gimbal component is rotatable relative to the second gimbal component about a second axis.