Maximizing mutual information between observations and hidden states to minimize classification errors
    4.
    发明授权
    Maximizing mutual information between observations and hidden states to minimize classification errors 有权
    最大化观察和隐藏状态之间的相互信息,以最小化分类错误

    公开(公告)号:US07424464B2

    公开(公告)日:2008-09-09

    申请号:US11301996

    申请日:2005-12-13

    CPC classification number: G06N99/005 G06K9/6297 G10L15/144

    Abstract: The present invention relates to a system and methodology to facilitate machine learning and predictive capabilities in a processing environment. In one aspect of the present invention, a Mutual Information Model is provided to facilitate predictive state determinations in accordance with signal or data analysis, and to mitigate classification error. The model parameters are computed by maximizing a convex combination of the mutual information between hidden states and the observations and the joint likelihood of states and observations in training data. Once the model parameters have been learned, new data can be accurately classified.

    Abstract translation: 本发明涉及一种在处理环境中促进机器学习和预测能力的系统和方法。 在本发明的一个方面,提供了相互信息模型,以便根据信号或数据分析来促进预测状态确定,并减轻分类错误。 通过最大化隐藏状态和观察值之间的相互信息的凸组合以及状态和观察在训练数据中的联合似然度来计算模型参数。 一旦模型参数被学习,新的数据可以被准确分类。

    Layered models for context awareness
    7.
    发明授权
    Layered models for context awareness 失效
    分层模型用于上下文感知

    公开(公告)号:US07203635B2

    公开(公告)日:2007-04-10

    申请号:US10183774

    申请日:2002-06-27

    CPC classification number: G06K9/6293 G06K9/726 G10L25/00

    Abstract: The present invention relates to a system and methodology providing layered probabilistic representations for sensing, learning, and inference from multiple sensory streams at multiple levels of temporal granularity and abstraction. The methods facilitate robustness to subtle changes in environment and enable model adaptation with minimal retraining. An architecture of Layered Hidden Markov Models (LHMMs) can be employed having parameters learned from stream data and at different periods of time, wherein inferences can be determined relating to context and activity from perceptual signals.

    Abstract translation: 本发明涉及提供分层概率表示的系统和方法,用于在多个时间粒度和抽象级别的多个感觉流中感测,学习和推断。 这些方法有助于实现环境微妙变化的鲁棒性,并通过最少的再培训实现模型适应。 可以使用分层隐马尔可夫模型(LHMM)的架构,其具有从流数据和不同时间段学习的参数,其中可以根据感知信号确定与上下文和活动有关的推论。

    Maximizing mutual information between observations and hidden states to minimize classification errors
    8.
    发明授权
    Maximizing mutual information between observations and hidden states to minimize classification errors 有权
    最大化观察和隐藏状态之间的相互信息,以最小化分类错误

    公开(公告)号:US07007001B2

    公开(公告)日:2006-02-28

    申请号:US10180770

    申请日:2002-06-26

    CPC classification number: G06N99/005 G06K9/6297 G10L15/144

    Abstract: The present invention relates to a system and methodology to facilitate machine learning and predictive capabilities in a processing environment. In one aspect of the present invention, a Mutual Information Model is provided to facilitate predictive state determinations in accordance with signal or data analysis, and to mitigate classification error. The model parameters are computed by maximizing a convex combination of the mutual information between hidden states and the observations and the joint likelihood of states and observations in training data. Once the model parameters have been learned, new data can be accurately classified.

    Abstract translation: 本发明涉及一种在处理环境中促进机器学习和预测能力的系统和方法。 在本发明的一个方面,提供了相互信息模型,以便根据信号或数据分析来促进预测状态确定,并减轻分类错误。 通过最大化隐藏状态和观察值之间的相互信息的凸组合以及状态和观察在训练数据中的联合似然度来计算模型参数。 一旦模型参数被学习,新的数据可以被准确分类。

Patent Agency Ranking