Abstract:
A fixed focus lens includes an M group that is disposed at a center of the optical system and has a positive refractive power; an F group that is disposed farther on the image plane side than the M group, has a negative refractive power, and is moved along the optical axis during focusing; a V group that is disposed farther on the object side than the M group, has a negative refractive index, and is moved in a direction orthogonal to the optical axis during vibration control; and an FC group that is disposed farther on the object side than the V group and has a positive refractive power. The V group is configured by a single lens element, and during focusing, at least the FC group and the M group are fixed.
Abstract:
A fixed focus lens includes an M group that is disposed at a center of the optical system and has a positive refractive power; an F group that is disposed farther on the image plane side than the M group, has a negative refractive power, and is moved along the optical axis during focusing; a V group that is disposed farther on the object side than the M group, has a negative refractive index, and is moved in a direction orthogonal to the optical axis during vibration control; and an FC group that is disposed farther on the object side than the V group and has a positive refractive power. The V group is configured by a single lens element, and during focusing, at least the FC group and the M group are fixed.
Abstract:
A compact and lightweight zoom lens system having excellent imaging performance, which is favorably applicable to an interchangeable-lens type digital camera system, is provided. The zoom lens system of the present invention includes, in order from an object side to an image side, a first lens unit having positive optical power, a second lens unit having negative optical power, a third lens unit having negative optical power, a fourth lens unit having positive optical power and including at least one resin lens, and an aperture diaphragm arranged in the fourth lens unit. In zooming from a wide-angle limit to a telephoto limit, an interval between the third lens unit and the fourth lens unit monotonically decreases. Further, the following condition (1) is satisfied: 1.0
Abstract:
Provided is a zoom lens system including a compact focusing lens unit and having a suppressed change in image magnification at the time of movement of the focusing lens unit. The zoom lens system of the present invention, in order from an object side to an image side, includes a first lens unit G1 having positive optical power, a second lens unit G2 having negative optical power, a third lens unit G3 having negative optical power, and a fourth lens unit G4 having positive optical power. At the time of zooming, all lens units moves in a direction along the optical axis such that intervals among respective lens units varies. Further, at the time of zooming, the third lens unit G3 moves in the direction along the optical axis such that the interval between the second lens unit G2 and the third lens unit G3 is made longer at a telephoto limit than the interval at a wide-angle limit. Still further, condition (6): −1.6
Abstract:
A zoom lens system comprising: a first lens unit having negative optical power; a second lens unit; and at least one subsequent lens unit, wherein in zooming, the first lens unit moves along an optical axis, and at least an interval between the second lens unit and a lens unit which is one of the at least one subsequent lens unit varies, in focusing, an interval between the first lens unit and the second lens unit varies, at least one aspheric surface is included in the at least one subsequent lens unit, and the condition: 0.1
Abstract:
A zoom lens system, in order from an object side to an image side, comprising a first lens unit of positive power, a second lens unit of negative power, a third lens unit of positive power, and a fourth lens unit of positive power, wherein in zooming, the first to the fourth lens units are moved along the optical axis such that the air spaces between the individual lens units should vary, so that magnification change is achieved, and wherein the conditions: −0.60
Abstract:
A zoom lens system is provided that includes a compactly constructed focusing lens unit and that has a suppressed change in the image magnification at the time of movement of a focusing lens unit. The zoom lens system according to the present invention, in order from an object side to an image side, comprises: a first lens unit having positive optical power; a second lens unit having negative optical power; and at least two subsequent lens units, wherein the at least two subsequent lens units include a lens unit A and a lens unit B arranged on the image side relative to the lens unit A, at the time of zooming, all lens units move in a direction along the optical axis so that intervals between the lens units vary, at the time of focusing, the lens unit A moves in a direction along the optical axis, and the following condition is satisfied. 0.10 4, ωW
Abstract:
Provided is a zoom lens system including a compact focusing lens unit and having a suppressed change in image magnification at the time of movement of the focusing lens unit. The zoom lens system of the present invention, in order from an object side to an image side, includes a first lens unit G1 having positive optical power, a second lens unit G2 having negative optical power, a third lens unit G3 having negative optical power, and a fourth lens unit G4 having positive optical power. At the time of zooming, all lens units moves in a direction along the optical axis such that intervals among respective lens units varies. Further, at the time of zooming, the third lens unit G3 moves in the direction along the optical axis such that the interval between the second lens unit G2 and the third lens unit G3 is made longer at a telephoto limit than the interval at a wide-angle limit. Still further, condition (6): −1.6
Abstract:
A zoom lens having a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power arranged in the order from an object side, wherein the first lens group includes a negative lens and a positive lens having at least one aspherical surface arranged from the object side and satisfies the following condition: 0.4
Abstract:
Disclosed is a zoom lens having a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power arranged in the mentioned order from an object side, wherein the first lens group includes a negative lens and a positive lens having at least one aspherical surface arranged in the mentioned order from the object side and satisfies a following inequality (1): 0.4