Abstract:
A method of bingo play comprises providing a bingo venue having both paper bingo cards and electronic bingo cards; conducting in the bingo venue a first paper bingo game by calling paper bingo numbers for marking only on the paper bingo cards; and simultaneously conducting in the bingo venue a second, separate electronic bingo game by calling electronic bingo numbers for marking only on the electronic bingo cards; such that the paper bingo cards are not in bingo competition with the electronic bingo cards.
Abstract:
An active soft recoil control system that provides a bi-directional recoil containment and double strike prevention, which improves recoil force management, reduces the potential for “short” rounds, results in a more compact and lighter weight weapon, and increases the uniform performance of the heavy weapon at temperature extremes and steep cants. Furthermore, the present system provides for a mechanism that enables safer firing pin retraction and reduces the potential for unintentionally striking the primer and initiating the round during misfire operations.
Abstract:
A retention system protects the round stored inside a rotating continuous belt-type magazine, and holds the round securely while allowing it to be readily and easily released prior to firing. The retention system permits all the retaining devices to be easily retracted so that a ramming mechanism of the weapon can push the round into the chamber without interference. The gun tube of the automated weapon houses the round and provides interfaces for all other components to attach. The tube length minimizes the axial movement of the round. The round is held within the tube by a front door assembly and a rear door assembly. The door assembly is made of a crescent-shaped door attached to a pivot shaft, in order to minimize the amount of rotational travel required to open the door for loading or firing the round.
Abstract:
An active recoil control system uses multiple sensors in combination with a solenoid controlled multi-disc brake to adjust the weapon recoil. Using outputs from the sensors, a controller predicts and reacts to a recoiling mass performance, and applies the required braking force, in order to compensate for anticipated or actual variations. Feedback from the sensors allows the active recoil control system to adjust braking during the recoil strokes and counter-recoil strokes in order to optimize the weapon operation and performance in extreme firing conditions.