Abstract:
A device for the thermal separation of water into hydrogen and oxygen, including a closed reaction chamber (1) containing water and, in said reaction chamber: —a heating system including one or several heat source elements (4,11), —one or several membranes (3), essentially impermeable to gas, to permit the selective passage of oxygen, —one or several membranes (2), essentially impermeable to gas, to permit the selective passage of hydrogen and —a mechanism (5) to permit the passage of water into said reaction chamber. According to the invention, —said heat source(s) (4, 11) is(are) placed in the water inside said reaction chamber (1), and, —said selective membranes (3) for oxygen are placed in said zones at high temperatures, —said selective membranes (2) for hydrogen are placed in said zones at lower temperatures. Preferably, the heating system is comprised of one or several concentrators (8, 9) of solar rays focusing the rays toward the inside of the reactor.
Abstract:
Control device for controlling a heating apparatus, such as a microwave oven. The microwave oven has a housing 12, an enclosure 16 in which a drawer 14 that receives a product to be heated slides, the microwave oven being actuated by a handle 15 and has optical and/or optoelectronic devices 21, 22 to read a distinctive sign 6 on either the product or its packaging. A processing module 30 is included to compare signals generated from reading this distinctive sign 6 with predetermined reference signals memorized in a storage device, and a supply module 43 generates operational control signals for the heating apparatus 10 in response to the result of this comparison. The optical and/or optoelectronic devices 21, 22 have a receiving cell 22 situated at the inlet and on the upper surface of the enclosure 16, the optical and/or optoelectronic devices being energized when the drawer 14 is pushed into the enclosure 16 to thereby effectuate a reading of the distinctive sign 6 on the product to be heated.
Abstract:
A device for the thermal separation of water into hydrogen and oxygen, including a closed reaction chamber (1) containing water and, in said reaction chamber: —a heating system including one or several heat source elements (4,11), —one or several membranes (3), essentially impermeable to gas, to permit the selective passage of oxygen, —one or several membranes (2), essentially impermeable to gas, to permit the selective passage of hydrogen and —a mechanism (5) to permit the passage of water into said reaction chamber. According to the invention, —said heat source(s) (4, 11) is(are) placed in the water inside said reaction chamber (1), and, —said selective membranes (3) for oxygen are placed in said zones at high temperatures, —said selective membranes (2) for hydrogen are placed in said zones at lower temperatures. Preferably, the heating system is comprised of one or several concentrators (8, 9) of solar rays focusing the rays toward the inside of the reactor.
Abstract:
We disclose a device for the production of hydrogen from water using heat. The device employs thermal water splitting and works essentially without electricity. It is based on the concept of a membrane reactor with two kinds of membranes allowing the separation of hydrogen and oxygen simultaneously in stoichiometric quantities from the reactor volume. The device has a special geometry resulting in a temperature distribution inside the reaction chamber to accommodate the use of hydrogen selective membranes. The device will help to reduce the need for hydrogen transport and storage as it will be rather compact for on-site use in households, small factories or gas stations. The use of the device in mobile applications is conceivable. The heat source of the device as described is combustion of a hydrocarbon using porous burner technology; however the device can be modified to exploit any other heat source, especially solar radiation.
Abstract:
Monomode electromagnetic radiation is generated in an irradiation zone. A disc-shaped product to be treated is held vertically in a carriage and is moved translationally into the irradiation zone. Upstream, infrared lights subject the product to infrared radiation. Thus, the product is very rapidly defrosted.
Abstract:
We disclose a device for the production of hydrogen from water using heat. The device employs thermal water splitting and works essentially without electricity. It is based on the concept of a membrane reactor with two kinds of membranes allowing the separation of hydrogen and oxygen simultaneously in stoichiometric quantities from the reactor volume. The device has a special geometry resulting in a temperature distribution inside the reaction chamber to accommodate the use of hydrogen selective membranes. The device will help to reduce the need for hydrogen transport and storage as it will be rather compact for on-site use in households, small factories or gas stations. The use of the device in mobile applications is conceivable. The heat source of the device as described is combustion of a hydrocarbon using porous burner technology; however the device can be modified to exploit any other heat source, especially solar radiation.