Abstract:
A network storage system includes a non-volatile memory to store data including a log of received data access requests, and a cluster interconnect adapter through which to send data to a cluster partner. The nonvolatile memory and the cluster interconnect adapter are implemented in a single device connected to an expansion bus in the network storage system. Communication with the nonvolatile memory is carried out using LDMA, and communication with the cluster partner is carried out using RDMA via the cluster interconnect adapter. LDMA and RDMA functionality are merged in a common software stack.
Abstract:
A network storage system includes a non-volatile memory to store data including a log of received data access requests, and a cluster interconnect adapter through which to send data to a cluster partner. The nonvolatile memory and the cluster interconnect adapter are implemented in a single device connected to an expansion bus in the network storage system. Communication with the nonvolatile memory is carried out using LDMA, and communication with the cluster partner is carried out using RDMA via the cluster interconnect adapter. LDMA and RDMA functionality are merged in a common software stack.
Abstract:
A network storage system includes a non-volatile memory to store data including a log of received data access requests, and a cluster interconnect adapter through which to send data to a cluster partner. The nonvolatile memory and the cluster interconnect adapter are implemented in a single device connected to an expansion bus in the network storage system. Communication with the nonvolatile memory is carried out using LDMA, and communication with the cluster partner is carried out using RDMA via the cluster interconnect adapter. LDMA and RDMA functionality are merged in a common software stack.
Abstract:
A server storage system operating in a cluster mode, and a method for operating the server system that provides additional memory for use by a non-failed server to store log records while taking over the operations of a failed server.
Abstract:
In one embodiment, the invention provides a method for establishing links between Fiber Channel (FC) protocol node devices through a FC fabric. In the method a common name is assigned to a pair of ports. Each port in the pair is located on first and second FC node devices, respectively. The common name-to-port assignment is then stored within a name server for the FC fabric. Each port in the pair of ports is configured to query the name server to establish an identity for the other port in the pair of ports based on the common name. The first and second FC node devices are configured to create a link between the pairs of ports that have been assigned a common name.
Abstract:
The present invention includes dynamically analyzing look-up requests from a cache look-up algorithm to look-up data block tags corresponding to blocks of data previously inserted into a cache memory, to determine a cache related parameter. After analysis of a specific look-up request, a block of data corresponding to the tag looked up by the look-up request may be accessed from the cache memory or from a mass storage device.
Abstract:
Aspects of the present invention concern a method and system for scheduling a request for execution on multiple processors. This scheduler divides processes from the request into a set of domains. Instructions in the same domain are capable of executing the instructions associated with the request in a serial manner on a processor without conflicts. A relative processor utilization for each domain in the set of the domains is based upon a workload corresponding to an execution of the request. If there are processors available then the present invention provisions a subset of available processors to fulfill an aggregate processor utilization. The aggregate processor utilization is created from a combination of the relative processor utilization associated with each domain in the set of domains. If processors are not needed then some processors may be shut down. Shutting down processors in accordance with the schedule saves energy without sacrificing performing.
Abstract:
The present invention includes storing in a main memory data block tags corresponding to blocks of data previously inserted into a buffer cache memory and then evicted from the buffer cache memory or written over in the buffer cache memory. Counters associated with the tags are updated when look-up requests to look up data block tags are received from a cache look-up algorithm.
Abstract:
A network storage server has a non-volatile mass storage facility, a main cache and a victim cache. A technique of intelligently determining whether to cache a data block in the victim cache includes determining whether to store the data block in the victim cache based on a first caching policy and the type of data contained within the data block. The first caching policy may be a global policy. The determination of whether to store the data block in the victim cache further may be based on a second caching policy, which may be a volume-specific control of service (CoS) policy.
Abstract:
A method comprising receiving a request for a connection over a network to an address is disclosed. The network conforms to a first network protocol, and the address conforms to a second network protocol. A field is compared to the network address. If the field matches the network address, a connection is established with a network node corresponding to the file. According to another embodiment of the invention, a Fibre Channel (FC) Virtual Interface (VI) is used to forward Transmission Control Protocol/Internet Protocol (TCP/IP) packets.