Abstract:
A method of displaying a stereoscopic image includes outputting a left-eye image to a first and a second display block of a display panel during an N-th frame. Light is provided to the first display block during a first period of the N-th frame and light is provided to the second display block during a second period of the N-th frame. A right-eye image is output to the first and second display blocks of the display panel during an M-th frame. Light is provided to the first display block during a first period of the M-th frame and light is provided light to the second display block during a second period of the M-th frame.
Abstract:
A data processing device includes a receiving module, a rendering module and a color compensation module. The rendering module receives image data from the receiving module and renders the image data into first, second, third and fourth sub-pixel data based on a layout of a first sub-pixel, a second sub-pixel, a third sub-pixel and a fourth sub-pixel and the color compensation module compensates for a color of the first, second and third sub-pixel data. The color compensation module converts the first, second and third sub-pixel data into first, second and third intermediate data, respectively, adds first, second and third delta values, which are determined based on the fourth sub-pixel data, to the first, second and third intermediate data, and thereby generates first, second and third compensation data.
Abstract:
An electronic device comprises a solar cell a main body which includes a display unit, a battery, and a processing unit and a power controller which connects the solar cell and the main body and controls the electronic device so that power generated from the solar cell is stored in the battery or used in the main body depending on a state of the main body.
Abstract:
A multi-view display device display images based on received image signals, received request signals, and transmits timing control signals. When the device receives request signals with distinct channel information during a given period, the device displays a first image signal and transmits a first timing control signal that includes one of the distinct channel information during a first period of an image frame, and displays a second image signal and transmits a second timing control signal that includes the other of the distinct channel information during another second period of the image frame. User controllers having glasses are activated or deactivated to view or obscure the displayed images based on receipt of the timing control signals.
Abstract:
A method of driving shutter glasses of a display system includes generating a display panel driving signal which drives a display panel of the display system, where the display panel displays a left image and a right image, generating a second three-dimensional (“3D”) synchronizing signal based on a first 3D synchronizing signal and the display panel driving signal, generating a third 3D synchronizing signal by adjusting an intensity of the second 3D synchronizing signal, generating a shutter control signal, which controls a left shutter and a right shutter of the shutter glasses, based on the third 3D synchronizing signal, and outputting the shutter control signal to the shutter glasses.
Abstract:
A three-dimensional image display device includes a luminance controller receiving a three-dimensional enable signal, a backlight data signal and at least one starting signal of a scan starting signal, a vertical blank starting signal and a backlight starting signal. The luminance controller outputs a backlight control signal and a backlight unit is operated based on the backlight control signal and is coupled to the luminance controller. The backlight data signal is based on a previous pulse of the starting signal and is applied from a first time when a current pulse of the starting signal starts to a second time when a next pulse of the starting signal starts.
Abstract:
A method of displaying a stereoscopic image includes outputting a left-eye image to a first and a second display block of a display panel during an N-th frame. Light is provided to the first display block during a first period of the N-th frame and light is provided to the second display block during a second period of the N-th frame. A right-eye image is output to the first and second display blocks of the display panel during an M-th frame. Light is provided to the first display block during a first period of the M-th frame and light is provided light to the second display block during a second period of the M-th frame.
Abstract:
A stereoscopic image display device includes; a display device into which left-eye image data and right-eye image data are alternately input, and a shutter member including a left-eye shutter and a right-eye shutter, wherein the left-eye shutter and the right-eye shutter are opened in at least one of at least a part of an input period for the left-eye image data and at least a part of an input period for the right-eye image data.
Abstract:
A multi-view display device display images based on received image signals, received request signals, and transmits timing control signals. When the device receives request signals with distinct channel information during a given period, the device displays a first image signal and transmits a first timing control signal that includes one of the distinct channel information during a first period of an image frame, and displays a second image signal and transmits a second timing control signal that includes the other of the distinct channel information during another second period of the image frame. User controllers having glasses are activated or deactivated to view or obscure the displayed images based on receipt of the timing control signals.
Abstract:
A three dimensional image display device, including: a display panel that alternately displays a left eye image and a right eye image, wherein a common voltage synchronized with a voltage reset signal is applied to the display panel and the voltage reset signal is maintained at a high level for a predetermined time before the voltage reset signal is input to the left eye image or the right eye image.