Abstract:
A metal atomizing device includes a casing with an inlet tube for providing liquid metal into the casing and an outlet is defined through the casing. The inlet tube and the outlet share a common axis. A polygonal impact member is located at an outlet of the inlet tube and a plurality of gas inlets are connected to the casing so as to provide noble gas into the casing and mixed with the liquid metal that impacts on the impact member. A collection member is located at the outlet of the casing and a pipe communicates with the collection member and the inlet tube so as to send the larger particles into the casing.
Abstract:
A metal atomizing device includes a casing with an inlet tube for providing liquid metal into the casing and an outlet is defined through the casing. The inlet tube and the outlet share a common axis. A polygonal impact member is located at an outlet of the inlet tube and a plurality of gas inlets are connected to the casing so as to provide noble gas into the casing and mixed with the liquid metal that impacts on the impact member.
Abstract:
A metal atomizing device includes a casing with an inlet tube for providing liquid metal into the casing and an outlet is defined through the casing. The inlet tube and the outlet share a common axis. A polygonal impact member is located at an outlet of the inlet tube and a plurality of gas inlets are connected to the casing so as to provide noble gas into the casing and mixed with the liquid metal that impacts on the impact member.
Abstract:
This invention is a twin-plate flameholder for an afterburner and reheater of jet engines as well as for industrial burners and incinerators. The flameholder features two plates with a certain overlap and a slit at the overlap portion. A small portion of the air and fuel flows through the slit between the two plates and results in a significant modification in the aerodynamic flow structure and local fuel distribution to enhances the capability of flameholding. Hence the performance of the flameholder is much better than conventional ones in terms of combustion efficiency, flame ignition, blowout limits, and operation range of the combustion devices. The inclined angle of the twin-plate flameholder can be adjusted by a turning mechanism to adjust the inclined angle of the twin-plate flameholder under different operation conditions. Furthermore, a series of the twin-plate flameholders can be linked together with a control mechanism so that these flameholders can be rotated in the same or opposite direction. Finally, the claimed mechanism can be utilized in the industrial burners and incinerators to enhance their combustion performance and to discharge ash or incidental clog.
Abstract:
The invention discloses a method of manufacturing rapid prototyping workpiece by projecting a laser beam or other light onto the photo-conductive drum to attach powder materials to form a thin layer, and then coat the thin-layer material on a working platform. A point, line or plane light source of stronger intensity is used to go with the DMD (Digital Micromirror Device) or LCD (Liquid Crystal Display) to produce a physical change or a chemical change in the selected projecting region and combine the materials to become an acceptable property. The method comprises three stages of a process and repeats the process to complete a physical workpiece. The first stage refers to evenly spreading electric charges on a photo-conductive drum, and then projects a laser beam or a visible light onto the photo-conductive drum to electically conduct the electric charges and lower the electric potiential. By that time, the photo-conductive drum rotated in a high speed passes through a cartridge containing powder, the material will be attached onto the photo-conductive drum, since there is a potential difference between the photo-conductive drum and the material. Then, an appropriate method is used to flatly coat the material disposed on the photo-conductive drum onto the working platform, and thus a very thin even material layer is formed. The second stage refers to using a point, line or plane light source of stronger intensity for a selected region to go with a DMD or LCD to project or scan the selected region and produce a physical or chemical change, so that the materials are combined with each other to form an acceptable property. The third stage refers to removing the material remained on the photo-conductive drum and eliminating the static charges on the photo-conductive drum, so that the electric potential at the surface of the photo-conductive drum resumes its initial state to facilitate the next loop of actions. The whole manufacturing process uses this method to stack layer by layer to build a complete three-dimensional physical workpiece, so as to achieve the effect of saving work hours, materials and costs as well as enhancing the precision of the workpiece. The invention is definitely a very valuable manufacturing method.
Abstract:
This is to claim the invention of the twin-plate flameholders that can be applied to the afterburner and reheater of the jet engines as well as the industrial burners and incinerators. The claimed flameholder features a certain overlap between the two plates and a slit at the overlap portion. It turns out that a small portion of the air and fuel flows through the slit between the two plates will result in significant modification in the aerodynamic flow structure and local fuel distribution to enhance the capability of flameholding. Hence the performance of the claimed FLAMEHOLDER is much better than the conventional ones in terms of the combustion efficiency, flame ignition and blowout limits, and operation range of the combustion devices. The inclined angle of the twin-plate flameholder can be adjusted by a turning mechanism, this provides the benefit to adjust the inclined angle of the twin-plate flameholders under different operation conditions. Furthermore, a series of the twin-plate flameholders can be linked together with a control mechanism so that these flameholders can be rotated in the same or opposite direction. Finally, the claimed mechanism can be utilized in the industrial burners and incinerators to enhance their combustion performance and to discharge the ash or incidental clog.
Abstract:
A method for forming objects includes a step of spreading a base material layer on a surface, a step of initiating a first physical or chemical change of the base material layer by exposure to one of ultra violet beams or infra-red beams so as to become a gelled material, a step of initiating a second physical or chemical change by application of a laser beam to selected areas of the gelled base material layer to make each selected area to become hardened in mature, a step of repeating steps 1-3 a pre-determined number of times, each newly added base material layer being laminated on a preceding layer to form a plurality of stacked layers, the hardened selected areas of the plurality of stacked layers defining a solid object, and a step of removing the portions of base material layers remaining in gelled form to obtain a final prototype.
Abstract:
A metal atomizing device includes a casing with an inlet tube for providing liquid metal into the casing and an outlet is defined through the casing. The inlet tube and the outlet share a common axis. A polygonal impact member is located at an outlet of the inlet tube and a plurality of gas inlets are connected to the casing so as to provide noble gas into the casing and mixed with the liquid metal that impacts on the impact member. A collection member is located at the outlet of the casing and a pipe communicates with the collection member and the inlet tube so as to send the larger particles into the casing.
Abstract:
This invention applies a new computer and printer integrated technology to aid forming physical objects rapidly, and the method and apparatus are disclosed to satisfy the market requirements for a quick, reliable, safe, and inexpensive operation. The invention coverts a virtual object stored in the storage device of computer through software that slices the virtual object into many layers. The cross-section of the first layer is sent to a printer or a plotter, and the contour domain is printed or plotted by the printer or plotter. The fluid (not limited to binder) in the printer head is coated onto a layer of uniform distributed porous material which allows the powder and fluid to combine with each other; however, the combining process can be either a natural or an artificial process to enhance the binding force between the fluid and powder. After the first layer is finished, the second layer of powder is uniformly distributed on the first layer, and the contour printing process is repeated. As the printing process is repeated until all slicing layers of the model are finished, the object is stacked layer by layer sequentially. The physical object can be obtained after all the unglued powders are removed. The above-mentioned printing process not only produces monochrome objects, but also produces color objects. The machine includes components of a printer or plotter and its interface card, and x-z axis traversal driven mechanism. The operation platforms include a material supply chamber, a constructing chamber at which powder material is combined with solution, and a recycling hole. A slicing algorithm control software is used to calculate the cross-sectional contour, and the manufacture process is controlled by software and hardware interfaces.
Abstract:
A method for forming objects includes a step of spreading base material on a limited area by nozzles or rollers, step of proceeding a first time of physical or chemical change on selected areas by heating boards, ultra violet beams or infra-red beams so as to have gel-like material, and step of selectively proceeding a second time of physical or chemical change by laser beam or adding additional material on the selected areas of the base material so that the nature of the gel-like material becomes acceptable. The gel-like material is laminated to build a three dimensional object.